

## Ungulate impact on height growth of forest regeneration in Germany

**BIOWILD-PROJECT** 



#### Content

- 1. Impact of browsing
- 2. Project-Summary
- 3. Data
- 4. Variable Selection
- 5. Statistical analysis
- 6. First results
- 7. Conclusion
- 8. Outlook





#### Impact of browsing

- Browsing = Biomass Withdrawal = Nutrient Removal
  - Vitality reduction
- Impact of heavy browsing pressure:
  - Reduced height growth
  - Reduced height growth
    Reduced competitive strength

- Selective browsing -> Reduction of species mixture
- Economical damages:
  - Loss of regeneration and reduced timber quality
  - Reduced tree species portfolio -> Risks
  - Slower growth -> opportunity costs
  - Costs for browsing prevention





#### BioWild-Project

- Goal:
  - Evaluating the condition of the forest vegetation
  - •
- 5 project regions in Germany
- Different ownership structures
- Variate growth conditions
- 248 sampling areas





#### Data acquisition

- Annual vegetation survey (since 2016)
- 100 m<sup>2</sup> fenced and unfenced plots
  - No ungulate vs. "given" ungulate influence
- Main variables of the woody regeneration
  - Species [factor]
  - Height [numerical] (50:500 cm)
  - Browsing [binary]
  - Quantities per plot [numerical]
- Site variables
  - Light
  - Hunting bags -> Roe deer
  - Hunting regime (factor)
  - (Site mapping variables)





#### Two-Sample tests

- Significant differences fenced and unfenced plots?
- Probability distributions:
  - Count-Data/Densities -> Poisson
  - Height -> Poisson
- Nonparametric statistics
  - Wilcoxon rank-sum test for densities and height
  - $H_0 = \tilde{x}_A \le \tilde{x}_B \text{ vs. } H_1 = \tilde{x}_A > \tilde{x}_B$ 
    - 95 % confidence interval ->  $\alpha$  = 0.05
- Median of Densities
  - Significant difference since 2017
- Median of Heights
  - Significant difference since 2017





#### Variable Selection -> Random Forest

#### HEIGHT, UNFENCED, 2018

HEIGHT, FENCED, 2018







## Generalized mixed effect model

- Dependent variable: Height
  - Poisson distributed
- Coefficient (green box)
  - Fixed effects
- Statistical dependence of the observations
  - Random effects (red box)

Browsing
Years
Density
Hunting bag

Sampling area: Years



Regression







#### Prediction – Beech





#### Prediction – Norway spruce





#### Prediction – Beech with density gradient





#### Probability being browsed again





#### First conclusions

- Ungulate browsing has a significant impact on the height and density of regeneration (larger 50 cm)
  - Impact differs between tree species
  - Height growth -> sensitive browsing indicator
- Generalized mixed effect model -> suitable for predicting the development of height growth
- Plants that have been browsed in the past are more likely to be browsed again



#### Outlook

- Include more explanatory variables
  - Site information (Cation-exchange capacity)
- Include competition
  - Intra- and interspecific competition
- Use loss of height growth by ungulate browsing in forest economic models
- Why did density and hunting bag seem important in the Random Forest, but weren't in the mixed effect regression?



### IUII

# Many thanks for your attention!



23.01.2020 KAI BÖDEKER 15