

Optimizing land-use portfolios on farm-level: Case study for a South African forestry and agricultural enterprise

Isabelle Jarisch

Technical University of Munich

TUM School of Life Sciences Weihenstephan

Institute of Forest Management

Freising, January 23, 2020

Research objectives

- 1) Defining **land-use types** (LUT), which are suitable for the specific sites and typical for the enterprise
- 2) Financial assessment of the chosen LUTs
- 3) Recommendations for an **optimized land-use composition f**or several levels of **risk acceptance** based on **stochastic and robust** optimization
- 4) Multi-criteria evaluation of the LUT
- 5) Comparing pure financial and multi-criteria optimized land-use portfolios under the assumption of substitutability and non-substitutability

1) Definition of appropriate land-use types

Pinus patula **Ppat**

Pinus elliottii **Pell**

Eucaluytus grandis Egra

Eucalyptus grandis x urophylla **Egxu**

Persea americana cultivar Hass; Irrigated (**Hass40**) and dryland management (**Hass40_dry**)

2) Financial assessment

- a) Financial performance of every LUT: soil rent
- b) Financial risk of every LUT: standard deviation
- c) Correlations (just necessary for the stochastic approach)

2) Results: Financial performance and risk

Soil rent and standard deviation in USD per hectare for a discount rate of 5%

3) Recommendations for an optimized Portfolio

Portfolio theory:

Investments with different riks are combined such that the expected return is maximized for a given level of risk. The risk is defined as standard deviation of the mean return of the single asset.

(Harry Markowitz, 1952)

3) Recommendations for an optimized Portfolio

Stochastic optimization following Markowitz (1952,2010)

Robust optimization following Messerer et al. (2017) and Knoke et al. (2015)

Objective Function of both approaches:

Maximizing the expected returns of the land-use portfolio, but different constraints and theorethical background

$$\max E(Y_L) = \sum_{i \in L} E(y_i) \times f_i \qquad f_i = \text{soil rent of option i}$$

$$f_i = \text{share of option i}$$

Markowitz (1952): *J Finance* 7 (1):77–91; Markowitz (2010): *Annu Rev Financ Econ* 2 (1): 1–23. Messerer et al. (2017): *Ann For Sci* 74 (2): 45; Knoke et al. (2015): *Ecol Econ* 120: 250–259

Comparing the optimization approaches

Stochastic Optimization

- Non-linear programming
- High amount of input data necessary
- required: normally distributed financial returns
- Even just small changes in the input data can cause strong reactions on the results, sometimes extrem results
- Uncertainty is included as probability distribution

Robust Optimization

- Linear programming
- Works with scarce data
- No information about result distribution required as we use uncertainty boxes
- More robust results
- Considering large uncertainty boxes
 (= borders of the parameter
 fluctuations), therefore including higher
 risks than at stochastic optimization

3) Recommendations for an optimized portfolio

3) Recommendations for an optimized portfolio

Comparison of portfolios with identical Standard Deviation for both aproaches

Comparison of the respective land-use shares for the stochastic (SO) and robust (RO) optimized Portfolios for selected standard deviations

Comparison of the annuities in USD/ha for the stochastic (SO) and the robust (RO) optimized land-use Portfolio $FOR_AVO_5\%$

3) Recommendations for an optimized portfolio

Research objectives

- 1) Defining **land-use types** (LUT), which are suitable for the specific sites and typical for the enterprise
- 2) Financial assessment of the chosen LUTs
- 3) Recommendations for an **optimized land-use composition f**or several levels of **risk acceptance** based on **stochastic and robust** optimization
- 4) Multi-criteria evaluation of the LUT
- 5) Comparing pure financial and multi-criteria optimized land-use portfolios under the assumption of substitutability and non-substitutability

4) Multi-criteria evaluation

Socio-economic indicators

- Financial return: Net Present Value for 3 different discount rates
- Access to money: Payback periods for 3 different discount rates

Ecological indicators

- Carbon sequestration: above-ground biomass
- Life Cycle Assessment: impact of transport
- Fertilizer application
-

Substitutability: Instead of optimizing the performance of the worst scenario (highest distance to best case), we optimize the overall **sum of all scenario performances**. Therefore, the performances of different indicators can compensate for each other.

Thank you! Baie Dankie!

