Optimierung der Baumartenzusammensetzung und der zeitlichen Abfolge von Verjüngungshieben bei multiplen Zielsetzungen

Optimizing tree species composition and management under multiple objectives and uncertainty

Thomas Knoke

Institute of Forest Management waldinventur.wzw.tum.de

- Novel business models and mechanisms for the sustainable supply of and payment for forest ecosystem services

(Dimke)

The valuation of silvicultural alternatives is often scenario driven. We predefine what we would like to do and then evaluate the outcome ("post mortem").

Alternatives to silvicultural scenario approaches include:

Tahvonen et al. (2010) Forest Ecology and Management 260: 106-115; Tahvonen and Rämö (2016) Canadian Journal of Forest Research 46: 891-901; Roessiger et al. (2016) European Journal of Forest Research 135: 283–295; Tahvonen und Kallio (2006) Natural Resource Modeling 19: 557–586.

However: All studies pure economics, all ignore uncertainties ...

Aim: Develop a stand-level optimization approach that suggests species composition and (stylized) management, given pre-defined objectives and uncertainties.

Materials

- 1. Norway spruce, Silver fir and European beech
- 2. Growth and biomass (carbon) taken from Pretzsch et al. (2014), Silver fir 90% of Norway spruce growth
- 3. Survivability according to Brandl et al. (2020)
- 4. Simplified assumptions for growth response (Messerer et al. 2020)
- 5. Based on four indicators (i) for ecosystem services
- 6. Four simplified uncertainty scenarios (u) per indicator (i)

	Timeline									
Scenario	20	30	40	50	60	70	80	90	100	110
1	Expected									
2	Worst case	Expected								
3	Expected	Worst case	Worst case	Worst case	Expected	Worst case	Expected	Worst case	Expected	Worst case
4	Worst case									

7. How much timber from which species to harvest in which period?

Brandl et al. (2020) Forest Ecology and Management, 458: 117652: 1-9. Messerer et al. (2020) Canadian Journal of Forest Research, accepted. Pretzsch et al. (2014) Nature Communications 5, Article number: 4967.

Methods

- Continuous multiple objective optimization (solved with Frontline systems)
- Robust portfolio approach
- Minimizes maximum normalized distance to reference points
- Based on **Euclidian distances** (second order cone constraints)
- Allocation of harvest area to periods and tree species ("area control")

Combines methods from:

- 1. Messerer et al. (2020) Importance of considering the growth response after partial harvesting and economic risk of discounted net revenues when optimizing uneven-aged forest management. Canadian Journal of Forest Research, accepted.
- 2. Uhde et al. (2017) Bringing ecosystem services into forest planning Can we optimize the composition of Chilean forests based on expert knowledge? Forest Ecology and Management 404: 126-140.
- 3. Messerer et al. (2017) A non-stochastic portfolio model for optimizing the transformation of an even-aged forest stand to continuous cover forestry when information about return fluctuation is incomplete. Annals of Forest Science 74(2): 45.
- Knoke et al. (2016) Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties. Nature Communications 7: 11877.
- 5. Knoke et al. (2015) Optimizing agricultural land-use portfolios with scarce data—A nonstochastic model. Ecological Economics 120: 250-259.

Minimize maximum distance β to a reference point by allocation of **harvest area proportion**, a_{sp} to species and periods

Species 1 Species 2 Species 3

Programming approach

 $\min \beta$

$$\beta = \max_{i,u} \{D_{i,u}\}$$
s. t. Euclidian distance:

$$D_{iu} = \sqrt{\sum_{s \in Species} \sum_{p \in Period} \left(a_{sp} \frac{Y_{iu}^{desirable} - y_{ispu}}{\Delta_{iu}} \right)^2}$$

Robust optimization –

objective function expressed by multiple constraints:

$$D_{iu} \leq_k \beta \qquad \forall i, y_{ispu} \in U_i$$

Cone constraints:

 $k = \{(D_{iu},\beta)| \|D_{iu}\|_2 \leq \beta\}$

Normalization between maximum and minimum:

$$\Delta_{iu} = y_{iu}^* - y_{iu*}$$

Area budget:

$$\sum_{s}\sum_{p} \boldsymbol{a_{sp}} = 1 \ (100\%)$$

Non-negativity:

Baseline and plausibility check

Maximization of economic profit (single objective is then soil expectation value) without consideration of uncertainty, discount rate 1.5% results in a pure **Silver fir forest** and a clearcut at **age 70**.

Standing inventory year 110:

367 cubic meters

Timber	972	cubic meters
Cash flows	21956	Euros
SEV	9997	Euros
Wood carbon	67	Tons -7-

The impact of considering four uncertainty scenarios

Periodical and continuous – diversified - harvesting. Mixed forest, still 34% Norway spruce. Implicitly elevated carbon storage levels: positive externality.

Species distribution		Timber	899	cubic me	eters
Norway spruce	34%	Cash flows	20542	Euros	
Silver fir	56%	SEV	8213	Euros	
European beech	11%	Wood carbon	87	Tons	-8-

The impact of considering four indicators, without uncertainty

With 48% relatively high Norway spruce proportion. Quite high carbon storage.

Indicators

- 1. Timber volume (110-120 years)
- 2. Cash flows
- 3. Soil expectation value (SEV)
- 4. Carbon storage in standing timber

Norway spruce

S100=57% in this mixed stand

Standing inventory year 110: 75 cubic meters

Species distribution		Timber	939	cubic meters
Norway spruce	48%	Cash flows	28253	Euros
Silver fir	47%	SEV	9048	Euros
European beech	5%	Wood carbon	129	Tons

The impact of considering four indicators, with uncertainty

Rather conventional, less Norway spruce, more European beech.

Indicators

- 1. Timber volume (110-120 years)
- 2. Cash flows
- 3. Soil expectation value (SEV)
- 4. Carbon storage in standing timber

Norway spruce

S100=62% in this mixed stand

Standing inventory year 110 141 cubic meters

Species distribution		Timber	888	cubic meters
Norway spruce	28%	Cash flows	24074	Euros
Silver fir	58%	SEV	7789	Euros
European beech	15%	Wood carbon	106	Tons -10-

Scenario	m for worst case: Expected minus m x Sd	Land expectation value [€/ha]	Difference to maximum [€/ha]	Annual premium [€/(ha*year)]
Profit maximization	0	9997	0	0
Multiple objectives	0	9048	949	14
Risk-adjusted profit maximization	3	8213	0	0
Multiple objectives	3	7789	424	6
Risk premium			1784	27

Conclusions

Modelling silvicultural alternatives may create new insights:

- The worldwide common clear-felling system is for a single stand and moderate discount rate – only advantageous in a world without risks and with only one objective
- 2. Considering risk aversion leads to a silviculture similar to **continuous cover forestry**
- 3. The latter brings along implicitly elevated carbon storage as a **positive externality**
- Multiple objectives don't lead automatically to continuous cover forestry; but this may depend on stand type

