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Abstract

The spatial variability of topsoil texture and organic matter across fields was studied using field-
spectroscopy and airborne hyperspectral imagery with the aim of improving fine-scale soil
mapping procedures. Two important topsoil parameters for precision farming applications,
organic matter and clay content, were correlated with spectral properties. Both parameters can be
determined simultaneously from a single spectral signature since organic carbon largely responds
to wavebands in the visible range and clay responds to wavebands in the Near Infrared. Because
of cross-correlations, one has to consider iron oxides and high amounts of coarse sand in order to
infer clay content from the spectral signature. The composition of the organic matter should be
considered in order to infer the organic matter content from the spectral signature. It is shown that
the clay and organic matter content can be predicted quantitatively and simultaneously using Partial
Least Squares Regression by a multivariate calibration approach.
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Introduction

Frequently, significant heterogeneity across fields can be found in topsoils which cause differences
in crop germination, nutrient and water uptake and thus markedly influence crop growth. Topsoil
heterogeneity also causes patterns of e.g. erosion, surface sealing, nutrient mineralisation, and
water balance. It has, therefore, implications for site specific management practices and strategies.
For optimizing crop growth, soil tillage, seed bed preparation, fertlllzatlon and herbicide use, in
particular, must be adapted to local topsoil properties.

However, there is still a serious lack of site specific data about physico-chemical topsoil
characteristics for precise and spatially variable management. Several authors have established
relationships between soil reflectance and organic matter (Dalal & Henry, 1986, Udelhoven et al.,
2001) and soil texture (Al-Abbas et al., 1972). Both soil parameters play significant role in
assessing topsoil characteristics e.g. aggregation and resistance to erosion (Neemann, 1991).
Thus, a study was conducted to identify, quantify and locate topsoil properties using a novel
approach combining multivariate calibration techniques, field-spectroscopy and hyperspectral
remote sensing. The aim of this work was to derive a quantitative determination of clay content and
organic matter content (OMC) from single spectral signatures. This would potentially allow
mapping soil texture and organic matter simultaneously by remote or proximal sensing.

Material and methods
The area of investigation was located in Sachsen-Anhalt, Germany. It was characterised by two
soilscapes, a slightly undulated tertiary plain at 70 m altitude and the alluvial plain of the river Elbe

at 50 m altitude. With 450 mm mean annual precipitation and 9 °C mean annual temperature, the
region has a negative water balance during the vegetation period. The tertiary plain is covered by
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Aeolian sediments mixed with different portions of tertiary sand and clay. The predominant soil
type is Chernozem in conjunction with Cambisols. The alluvial plain is characterised by coarse
sand to fine sand, loamy and clayey sediments. The predominant soil types are Mollic Gleysols and
Fluvisols. The fine-scale pattern of soil texture and organic matter within the fields of both
landscapes results in highly diverse soil properties and virtually forces the application of site
specific management.

To represent a relevant spectrum of soil texture and OMC that is frequently found with arable soil,
the study was based on 29 topsoil samples for regression analysis and on 72 topsoil samples for
multivariate calibration using Partial Least Squares Regression. The samples were passed through
a2 mm sieve and were air dried. The soils were analyzed for total amount of organic carbon (C,,,)
and the total amount of nitrogen (N,) by dry combustion using an elemental analyzer. The factor
1.724 (Nelson & Sommers, 1982) was used to estimate the OMC from the C org values. The min-
max range of the soil data is given in Table 1. The sample sites were selected according to different
combinations of soil forming geo-factors and represent largely the typical range of texture and
OMC in arable soil.

Based on a digital terrain model an adapted topographic wetness index (aTWI) was calculated
(Bohner et al., 2002) to characterize differences in site-specific dry and wet conditions of the
organic matter formation which was expected to cause differences in organic matter composition.
For a subset of 29 samples, the organic matter composition was additionally characterized by
aliphatic and aromatic compounds using extraction methods (Schnitzer, 1982). The particle size
distribution was analyzed using sieve analysis for the sand fractions and the coarse silt fraction and
pipette analysis for the fine fractions of silt and clay. Iron oxides were determined by measuring
the ditionite solubility (Fe,) and the oxalate solubility (Fe,) (del Campillo and Torrent, 1992).
Topsoil reflectance (330-2500 nm) was measured in the field using a GER 3700 field-spectrometer
and a lambertian Spectralon reference panel of known reflectivity. A 50x50 cm plot was used as
field of view. Due to insufficient spectral signal-to-noise ratio, two ranges (1350-1420 nm and
1780-1980 nm) of the continuous spectral signatures were excluded from further analysis. The
airborne HyMap sensor was used at an early May flight campaign for recording hyperspectral
images (420-2480 nm, 128 channels) of bare soil fields in the study area. In order to simulate
HyMap spectra, the field-spectrometer spectra were resampled according to the position and range
of the HyMap spectrometer wavebands.

In the first data analysis step, the OMC and the clay content were correlated to each waveband in
order to find relevant wavebands. In a second step, Partial Least Squares Regression (PLSR) was
applied to develop and calibrate an inverse model that establishes a quantitative relationship
between the spectra of the field-spectrometer measurements and the soil parameters (Nas et al.,
2002). PLRS models were calibrated separately for OMC and for clay content. To ensure that the
PLSR model can be used after the calibration procedure concurrently to the HyMap data, the
Piecewise Direct Standardization (Wang et al., 1993) was applied to both spectral data sets. Several
pre-treatment techniques were applied to the data set including vector normalization, min-max
normalization and first derivative (Martens & Nes, 1989). Finally, the optimal calibration model
was used to predict the OMC from the HyMap spectra for each HyMap image pixel of bare soils
resulting in a map showing the distribution of the topsoil OMC.

Table 1.The min-max ranges of soil parameters.

Sand (%) Silt (%) Clay (%) OMC (%) N,(%) CI/NRatio Fe, (%) Fey (%)

Min. 16 5 7 0.7 0.05 8.2 0.06 0.14
Max 88 72 35 5.2 0.26 12.4 0.48 0.98
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Results

Most of the measured soil parameters were not independent. Different relations with significant
correlations were found. A close correlation was found between clay and iron oxides. Clay and the
oxalate soluble iron oxides Fe_ showed a linear correlation (r=0.90***). Clay and ditionite soluble
iron oxides were also linearly correlated (r=0.94%%%).

The regression analysis of the spectral wavebands also revealed a strong spectral response for the
clay content. Individual wavebands showed a significant correlation with the clay content but only
in the spectral range >2300 nm. The best relation to clay was represented by a non-linear regression
with the wavebands at 2427-2436 nm (Figure 1; R2=0.78***). The relation was independent of the
OMC but was linked to iron oxides (R2=0.82***). The analysis of the data scattering suggested
that the spectral response to the clay content was independent of the organic matter but affected
by the sand fraction. Higher reflection values than expected were related to samples that were
characterized by a high amount of coarse sand.

The OMC correlated most strongly in the range of visible wavebands and the shorter Near Infrared.
The best non-linear regression was found for the wavebands 344-357 nm (Figure 2; R2=0.68%**%¥),
Similar and just marginally weaker coefficients were found for many of the individual wavebands
up to 920 nm, which was comparable with results of Al-Abbas et al. (1972).
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Figure 2. Relationship between the organic carbon content and the spectral reflection at 344 nm.
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The data scattering of the OMC was compared with the visible soil color. It became obvious, that
the organic matter composition plays a significant role in the absorption. This seemed to be
connected to the origin of organic matter due to site specific transformation processes (Ben-Dor
& Banin, 1995). The data scattering could be explained after separating the dataset in two sub-
classes ‘dry’ and ‘wet’ conditions of organic matter formation. Both data sub-classes also fitted to
the aliphatic and aromatic composition of the organic matter. It was assumed that the effect of
organic matter formation can be linked to terrain features which are related to water accumulation.
Thus, the aTWI was calculated as a metric value to describe the organic matter decomposition. The
samples which were characterized by higher values of aTWI, respectively aromatic compounds,
showed lower reflectance values. As a result, the composition of the organic matter must be
considered for more precise characterisation of the organic matter and for a better understanding
of the spectral response mechanism.

The univariate regression analysis indicates that even single wavebands are correlating with either
the clay content or the OMC. Since clay and organic matter respond to different spectral
wavebands, it is possible to extract both parameters quantitatively from a single signature.
Unfortunately, the results are strongly affected by other soil parameters due to the high variability
of uncertain combinations of geo-factorial effects. The organic matter therefore cannot simply be
described by its content in relation to the spectral properties. The composition of the organic matter
has to be included in the analysis. The spectral response of clay was affected by iron oxides and
high amounts of coarse sand. Both parameters had to be considered to precisely derive the clay
content using univariate analysis techniques.

Complexity and auto-correlations between the soil parameters in the above-mentioned results led
to the use of multivariate calibration techniques, particularly PLSR. Multivariate calibration was
performed with PLSR, which reduced the reflectance spectra to a few relevant factors and
regressed them to the OMC of a given sample (Martens & Nzs, 1989). From this regression, a
model was derived enabling prediction of the OMC from the spectra of samples with unknown
OMC. The same calibration procedure was also employed to derive a prediction model for the clay
content. Various wavelength regions and data pre-treatments were analysed using an optimization
routine to find the best calibration algorithm. The algorithms with the lowest Root Mean Square
Error of Cross Validation (RMSECV) were chosen as statistically the best. Since several data pre-
treatments result in similar error, those were chosen that had the lowest number of factors included
in the regression model (Nzs et al., 2002). The selected models use 5 factors for clay content and
7 factors for OMC. The results of cross validation for the different models and data pre-treatments
are listed in Table 2.

Overall, the vector normalization and the min-max normalization gave the best results. The
application of the first derivative led to less comparable results, possibly due to noise and the relatively
broad wavebands that were used after resampling the field-spectrometer spectra into simulated
HyMap spectra. But any pre-treatment produced better models than the use of the raw data.

The study indicates that multivariate calibration techniques, here represented by PLSR, can enable
the determination of the organic matter and the soil texture more precisely when using optimized
spectral waveband combinations than using only the best fitting to single wavebands. To achieve
a calibration algorithm that is robust against variability of natural factors, more wavebands, namely
the whole spectra, should be considered (Dardenne, 1996). Concurrently, most of the possibly
occurring variations of natural factor combinations should be represented in the calibration set to
achieve a robust calibration algorithm (Schenk and Westerhaus, 1991). The PLSR algorithm will
automatically give high weights to the decisive wavelength regions and low or zero weights to
uninformative wavelengths provided that the spectral and natural variability included in the
calibration set is high enough.

The optimal calibration model was found with the pre-treatment of vector normalization. Thus, this
algorithm was used to calculate the OMC from the HyMap spectra for each HyMap image pixel
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Table 2. PLSR estimates of the organic matter content (OMC) and the clay content of topsoils
from the resampled field-spectrometer signatures.

Soil parameter Data Preprocessing Field-spectrometer
R2 RMSECV
OMC None 74.2 0.44
OMC Vector normalisation 89.6 0.29
OMC Min-max normalisation 88.1 0.30
OMC First derivative 82.3 0.36
Clay content None 84.3 8.6
Clay content Vector normalisation 92.3 4.2
Clay content Min-max normalisation 91.5 44
Clay content First derivative 89.7 6.5

Figure 3. Spatial distribution of organic matter in the reference field ‘Finkenherd’.

of the bare soil reference field “Finkenherd”. The resulting map shows the distribution of the
topsoil OMC on this 45 ha field (Figure 3). The OMC values range from 0.5 (light) to 4.0 % (dark).
A first validation test, merely based on seven samples, indicated for this field a close correlation
of r = 0.89*** between the OMC predicted from the Hymap data and the OMC measured by dry
combustion method. The high variability of OMC across the entire field (45 ha) illustrates the
demand for variable tillage and fertilizer applications to provide optimal conditions for site-specific
crop growth.
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Conclusion

How to process precise and spatially highly resolved soil maps is still a critical question for site
specific management. It could be shown that hyperspectral remote and field-spectroscopic
proximal sensing combined with inverse model calibration based on Partial Least Squares
Regression has the potential to contribute significantly to this purpose. Simultaneous and rapid,
nondestructive determination of OMC and clay content in topsoils is possible by using multivariate
analysis of spectral data. The achievements presented in this study are likely to be good and lead
to the recommendation for further investigations to amalgamate soil sciences with remote sensing
and multivariate calibration techniques respectively modeling towards a fine-scale topsoil mapping
procedure for precision agriculture.
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