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Abstract

The spatial variability of within field topsoil texture and organic matter was studied using airborne hyperspectral imagery so as
to develop improved fine-scale soil mapping procedures. Two important topsoil variables for precision farming applications, soil
organic matter and soil texture, were found to be correlated with spectral properties of the airborne HyMap scanner. The percentage
sand, clay, organic carbon and total nitrogen content could be predicted quantitatively and simultaneously by a multivariate
calibration approach using either partial least-square regression (PLSR) or multiple linear regression (MLR). The different topsoil
barameters are determined simultaneously from the spectral signature contained in the single hyperspectral image, since the various
Van?bles were represented by varying combinations of wavebands across the spectra. The methodology proposed provides a means
of simultaneously estimating topsoil organic matter and texture in a rapid and non-destructive manner, whilst avoiding the spatial
accuracy problems associated with spatial interpolation, The use of high spatial resolution and hyperspectral remotely sensed data
in thc? manner proposed in this paper can also be used to monitor and better understand the influence of management and land use
Practices on soil organic matter composition and content.
© 2006 Elsevier B.V, All rights reserved.
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L Introduction

an(;rﬁp:mls freguently show a ﬁm? tessellated pattern
ou hzemge.nelty across fields indicated by e.g. color,
pherglo ess, infiltration, erosion and surface sealing
crop mena. T.hese cha_ractenstlcs cause differences in
markf(;rm"natlon, nutrient and water uptake anc.l thus
i y influence crop growth processes. This has

Plications for the pattern and the spatial extent of

* Corresponding author,
E-mail address. selige@wzw.tum.de (T. Selige).
0016

401:10.1016/}.geoderma.2006,03.050

“1061/8 - see front matter © 2006 Elsevier B.V. All rights reserved.

appropriate land use management practices and soil
conservation strategies including site specific manage-
ment in precision agriculture systems (Runge and Hons,
1998; Bullock and Bullock, 2000). To optimize crop
growth, the various cropping practices, including soil
tillage, seed bed preparation, fertilization and herbicide
use must be adapted to the local topsoil properties.
However, lack of high spatial resolution topsoil data is a
serious limitation to the establishment of sub-field soil
and crop management.

There is at present no effective way to map fine-scale
soil heterogeneity so as to derive site specific data about
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topsoil physical/chemical characteristics. Several
authors established relationships between soil spectral
reflectance data and organic matter characteristics (Dalal
and Henry, 1986; Ben-Dor et al., 1997; Ingleby and
Crowe, 2000; Reeves et al., 2002; Udelhoven et al.,
2003) and soil texture (Al-Abbas et al., 1972; Ben-Dor
and Banin, 1995; Thomasson et al., 2001; Ben-Dor et
al., 2002; Cozzolino and Morén, 2003). Soil attributes,
soil texture and soil organic matter, all play an
interdependent and decisive role in assessing topsoil
characteristics e.g. soil aggregation, aggregate stability
and resistance to water and wind erosion (Neemann,
1991). As a consequence it would be an advantage to be
able to map both sets of physical characteristics from the
one set of image data,

The aim of the work reported here was to develop a
method of mapping fine-scale topsoil organic and
texture parameters from a combination of field and
hyperspectral image data, The work investigated the uge
of both multiple linear regression (MLR) and partial
least-square regression (PLSR) to construct the model
necessary to estimate the soil physical/chemical vari-
ables from the image data, Field data were combined
with the image data for the construction of independent
models derived using both MLR and PLSR. This
innovative approach to digital soil mapping achieved
gain from the simultaneoys estimation of a suite of
topsoil parameters. Additiona]] , the use of high spatial
resolution remotely sensed data provides a more
detailed pattern recognition of the soil’g heterogeneity.
Generally in soil mapping a soil data set is available that
is restricted to only few sampled locations, The
approach reported here avoids the attendant problems
of accurate and reliable spatial prediction of spatial
interpolation that has to deal with a small soj] data set
that does not uncover the fine tessellated pattern of sojls,
Moreover, as a methodology that is applicable over large

management,
2, Material and methods

2.1. Geographical survey, 'geology and terrain

by three soilscapes. The southern part is a slightly
undulated tertiary plain at 70 m altitude that is covered
by a thin Loess layer up to 1.2 m deep. The northern pat
is the alluvial plain (glacial valley) of the river Elbe o
50 m altitude that served as the origin for the Acolim
deposit in the south. Both landscapes are separated by
late Pleistocene terminal moraines that form a transition
zone of low, gently undulating hills, with elevatiors
ranging from 50 to 90 m above sea level. Situated in the
rain shadow of the Harz mountains the region is
distinctly dry with 430 mm mean annual precipitation
and 9 °C mean annual temperature and has a marked
negative annual climatic water balance, so that a natural
surface drainage system has not evolved in the ares,
There are a few man-made drainage channels designgd
primarily to remove temporary stagnant subsoil water in
spring rather than to drain off surface waters or o
prevent flooding. The mean size of the agricultord
fields in the study area is about 45 ha and heigh
differences rarely exceed more than 3 m within a field.

The predominant soil type of the Loess cover.ed
Tertiary plain is Chernozem in conjunction with
Cambisols and Luvisols. The alluvial plain is charac-
terized by coarse sand to fine sand, loamy and clayey
sediments. The predominant soil types are Mollt
Gleysols, Fluvisols and Planosols. In the moraine pe]t
Cambisols, Regosols, and Kolluvisols evolved maily
from fine sandy and gravelly parent material, The highly
diverse soil properties within the fields of the landscapts
results in fine-scale pattern of soil texture and organic
matter and challenge the future application of moder
site specific management practjces.

2.2. Data sets

The remotely sensed data was acquired using "
HyMap™ scanner (Integrated Spectronics Pty Ltd
Australia), installed on the DLR Cessna Camval
aircraft. This scanner records spectra from 420 ©
2480 nm wavelength, in 128 wavebands with full widt
half maximum (FWHM) bands of 15 and 20 nm for the
420-1803 nm range and for the 19492480 nm 1205
fespectively (Cocks et al., 1998). The imagery o
acquired with 6 m pixel size at nadir and a swath Wfd t
0f30° from 12:30 t0 13:15 h on 19th May 1999. th'hl '
bosition and aircraft motion were recorded by an et
Navigation System with differential GPS. The de}ta ‘K:
atmospherically and geometrically corrected using da
ATCOR procedures (Richter and Schlzpfer, 2002) a0
rectification procedure (Schlipfer and Richter, 2002)f- r

To provide a representative soil data set
calibration burposes, we did not focus on X tade
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data sampling but rather designed the sample selection
procedure. The sample sites were picked out across the
testsite’s landscapes according to different combinations
of soil forming geo-factors and represent largely the
typical range of soil texture and soil organic matter in
the arable soils of the region. A total of 72 locations
were sampled on 12 bare soil fields covering roughly
700 ha distributed across the study area of 200 sq. km.
Spatial coordinates of the locations were measured
using Differential GPS. These locations were selected so
as to cover the range of SOM and soil texture conditions
that exist in the study site. From these samples, a subset
of 60 samples was selected by an algorithm providing
random subset selection. The selected samples were
used as the calibration data for multivariate regression
modeling. This data set was also used for cross-
validation purposes (one-leave-out cross-validation).
The remaining subset of 12 samples was used for
stand-alone testset validation purposes to test the
robustness of the different models. All samples were
Pa§sed through a 2 mm sieve and were air dried. The
soils were analyzed for total amount of organic carbon
(Corp) and the total amount of nitrogen (Ny) by dry
combustion using an elemental analyzer (LECO FP-
2000). The C,, and N, data range from 0.7% to 3.85%
al_ld from 0.07% to 0.37%, respectively. The particle size
distribution was analyzed using sieve analysis for the
sand ﬁactions and the coarse silt fraction and pipette
analysis for the fine fractions of silt and clay. The texture
ata ranges from 16% to 84% (sand), from 5% to 75%
(k) and from 7% to 26% (clay). Effects of soil surface
Iglmsture and roughness were excluded from this study
y Selectu}g bare soil fields after seed bed preparation
d organizing the flight campaign after a period of dry
Weather to ensure continuous dry soil surface

conditions,
The complexity of soil forming processes gives rise
par!:Ilultl-colhnearity 'fmd auto-correlation of most soil
) On‘;ilitilrs.' In particular Cory and N, are highly
rangezgc&n. arable soils expressed by the limited
dose relg index for the most parts of arable land. The
wed iy ion between the two parameters in the data set
tanges g;’en gm Fig, 1. Con.sequently the C/N ratio just
ofh C m s to 1?. Despite of the close connection,
Since ﬂ(;reg and N, differences are in fact quite relevant
— cZ reflect on one hand differences of organic
— m‘}‘POSI?Ion' and related soil properties e.g.
ences of mefahzanon, and on the other hand differ-
or dECOmpaSt and use practices that either accumulated
a“to-corrsl(:'ed SOM. Due to the potential occurrence of
0 take 101 1t was investigated to what extent it has
Dotice of a spatial trend in the data. A

to

04
y = 0.018 + 0.089 *x

1 R?=94.7%,n=72

Total Nitrogen, N, (%)
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Fig. 1. Relation between organic carbon (C,p) and total nitrogen (N;)
in the data set used.

semivariogram analysis performed on the residual
values reveals that there are no spatial correlations of
the regression residues.

2.3. Multivariate regression modeling

In this paper, the focus is on the development of
calibrated spectral models for the large scale soil
mapping of Cor, N; and the sand and clay contents.
The complexity of soil formation and attendant multi-
collinearity and auto-correlations between the various
soil parameters, as were found for example between Corg
and N,, has led to the use of multivariate calibration
techniques. Two multivariate regression techniques
were used to develop the models to estimate soil
parameters from the hyperspectral image data. Multi- -
variate calibration was performed using multiple linear
regression (MLR) and partial least-square regression
(PLSR). Both techniques allow the simultaneous
quantitative determination of several soil parameters
from individual spectral signatures. With the aim to
develop a method of fine-scale topsoil mapping, one
sub-goal of this study was to test the applicability of
multivariate regression techniques in hyperspectral
remote sensing rather than to compare the statistical
level of model fit. Consequently a simpler (MLR) and a
more complex numerical technique (PLSR) were chosen
for investigation.

To optimize the PLSR models and to ensure the
robustness against variability of natural factors, a
recorded spectral signature should be considered as a
whole (Dardenne, 1996). Similarly, it would be usual to
include all of the possibly occurring variations of natural
factor combinations in the model construction so as to
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achieve a robust model algorithm (Schenk and Wester-
haus, 1991). PLSR reduced the reflectance spectra to a
few relevant factors and regressed them to the soil value
of a given sample (Martens and Nas, 1989). The PLSR
algorithm will automatically give high weights to the
decisive wavelength regions and low or zero weights to
uninformative wavelengths provided that the spectral
and natural variability included in the calibration set is
high enough. A more detailed overview of PLSR model
may be found in Hastie et al. (2003).

As distinct from PLSR, MLR performs a regression
model selecting and combining those wavebands from
the spectrum that explain the soil values at best. The
general result of the MLR procedure is a prediction
equation of the following kind:

Cp =By +B|RJ| +B2R/12 e B,,R,{"

where C, stands for the predicted soil compound value,
By is a constant coefficient for the current population, B,
=B, are coefficients for each wavelength reading, R is
the reflectance or its manipulation by the different
spectra pre-treatment techniques and 2 stands for the full
width half maximum mean wavelength of the particular
spectral channel of the HyMap sensor, The numerical
methods are discussed in detail for MLR in Martens and
Nees (1989) and for PLSR in Nes et al. (2002).

From both regression procedures, models were
derived enabling prediction of the soil value from the
spectra of samples with unknown soil value. Various
wavelength regions and data pre-treatments were
analyzed using an optimization routine to find the best
calibration algorithm. To reduce noise and offset effects
from the data, several spectra pre-freatment methods
were utilized including vector normalization, min—max
normalization, derivates (Savitzky and Golay, 1964) and
multiple scatter correction (Geladi et al., 1985). Since
several data pre-treatments result in similar

: error, one
selected those leading to the inclusion of the fewest

factors in the regression model (Nees et al., 2002). For
each of the soil parameters, the mode) algorithm with the
lowest root mean Square error of cross-validation

(RMSECV) was chosen as statistically the best, For

this, cross-validation was computed as a one-leave-out
cross-validation,

Finally, the optimal calibration model for each soil

parameter was used to predict the particular parameter
from thfa HyMap spectra for each HyMap image pixel of
bare soils resulting in

. a map showing the distribution of
the top§011 parameter. For independent prediction of the
respective parameter,

: it was desirable similarly t
calibration algorithms st

for the different parameters that
depend on different wavebands. The spectrum of each of

the sample sites was extracted from the image data, For
this, we applied a seeded region growing algorithm to
identify the region with the spectrally most simila
neighboring pixels (Adams and Bischof, 1994). The
geographical coordinates of the sampled locations were
used as seed coordinates for the seeded region growing
algorithm. The algorithm’s implementation guaranteed
both to minimize the spectral Euclidean distance asa
measure of the region’s spectral similarity and to select
at least 8 pixels to represent each sample location. From
the spectra of these pixels, the mean spectrum of etfch
site was calculated. The potential impact of smooth‘mg
spectra through averaging on the calibration results is
more robust calibration model through noise reduction
in the spectral data. The channel at 1949 nm was
excluded from the spectra due to insufficient signal o
noise ratio at this water induced absorption band.

3. Results and discussion
3.1. Calibration procedure by PLSR

PLSR reduces the whole reflectance spectra to a few
relevant factors and regresses them to the measured
parameter of a given sample. While doing $0, &
calibration design is recommended that covers th.e
whole range of possible values (Brereton, 2090?' Is
also reported that a certain redundancy Wfthm te
spectra is usefu] to stabilize PLSR models against 1015
(Martens and Nees, 1989). When this is done, PLSR
models are considered to be more robust than .MLR
calibration models. This might be relevant in pamcula;
for SOM parameters, since SOM has numerous bﬂi;
overlapping absorption features located throughout y
spectra and consequently influences the overall shape
the reflectance curve (Baumgartner et al., 1985) Thust,
multivariate calibration was performed with PLSR st

Table 1

Partial least-square regression (PLSR) and multiple lincar 168
(MLR) models statistics for the different topsoil paramefers

Parameter PLSR

rossion

MLR :
Factors 2 RMSECV Wavelength R’ RMSEC

(nm) e e—

Corg 7 0.90 0.29 800, 830, 0.86 02
1194, 1322 "

N, 7 0.92 0.03 1194, 2115, 087 O
2185, 2220

Sand 9 095 9.7 2202, 2238, 087 129
2322, 2371

Clay 5 0.71 4.2 902, 950, 0.65 38

998, 1165
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Prediction equations of the best MLR regression models of the
different soil compounds (C,,) and selected HyMap sensor wavebands

{channels)

C, MLR prediction equation

HyMap channels

Cog  3.5688-0.0318 Rgop+0.0362 Rg3p—0.0173

Ri104+0.0122 Ry322
Ry115+0.002087 Ry135+0.001208 Raaa0
Sand 3.3~0.68 Ropga+1.15 Ry238—0.76
Rz +0.3 Razyy
Clay 19.48~0.19 Rgp+0.14 R 950+0.14
Rg95—0.09 Ryy65

N

26, 28, 52, 62

52, 106, 110,
112

111, 113, 118,
121

34, 37, 40, 51

PLSR models were derived enabling prediction of the
Corg content from the spectra of samples with unknown
Corg- The same calibration procedure was also employed
fo derive prediction models for the N, content as well as
prediction models for the sand and clay contents. All
wavelength regions of the spectra and different data pre-
ireatments were analyzed using an optimization routine
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to find the best calibration algorithm. The selected PLSR
models use both 7 factors for C and Ny, 9 factors for
sand content and 5 factors for clay content. Overall the
min—max normalization gave the best results for the
different data pre-treatments. The PLSR model statistics
are shown in Table 1.

3.2. Calibration procedure by MLR

The PLSR procedure reduces the spectra to a few
factors and as such it does not support the idea of
identifying the most significant individual wavebands.
The MLR procedure, by contrast, does enable the
selection of the most significant wavebands. Due to the
increase of calculation time with the number of
regression variables in MLR, the selection of algorithms
was limited to regression models with a maximum of 4
spectral variables in this study.

Thus, all possible subsets of regression models with
at least 1 and up to any combination of 2, 3 and 4
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spectral variables were calculated for each of the
selected soil parameters. The algorithm with the lowest
RMSECYV was chosen as statistically the best for each
soil variable. As was found with the PLSR calibration,
the min—max normalization gave the best results for the
different data pre-treatments. The prediction equations
of the best MLR regression models are listed in Table 2,
MLR model statistics are compiled in Table 1.

The calibration model output is shown versus the
measured reference values for C,, and for N, in Fig. 2.
Both models are in the same range of quality expressed
by R? and RMSECV. Both the C,, and the N, models
use different channels, with the exception of HyMap’s
channel 52 at 1194 nm. This underlines the indepen-
dence of the Cyy and the N, prediction in the spectral
domain.

Fig. 2 also shows the calibration model output versus
the measured reference values for sand and for clay in
Fig. 2, as well. The sand model fits well to the calibration
data as expressed by R? and RMSECYV, whereas the clay

4
3
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model is characterized by a much weaker regression fit
Both texture MLR models also used different wave-
bands. Thus all four MLR models are independent in
their parameter prediction from the spectral domain,
Only a few studies have been found in the literatue
that investigated the combination of hyperspectal
remote sensing and regression modeling procedutes o
map soil parameters. Ben-Dor et al. (2002) investigated
the MLR calibration procedure to quantify organ
carbon using the DAIS-7915 airborne scanner, whi
Galvao et al. (2001) used the AVIRIS sensor and
principle component regression for this purpose.
Deronde et al. (2004) reported about the unsupervistd
classification of 8 coastal sand types with differen

mineralogical and organic composition and gramle-
metric properties using the CASI airborne sensor. The

different sensor instrumentation and numerical methods
the different regions and data pools make it difﬁculf fo
compare the different procedures and the statistical
quality.
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3.3, Validation

A stand-alone validation was performed to test the
robustness of the different models. This validation test
using 12 independent field samples (neither used in the
calibration procedures nor in the one-leave-out cross-
validation) indicated a close relation of R%Z=0.89#xx
(+++ = significant level at P<0.001) and R?=0.91##x,
respectively between the Coy and N, content predicted
from the HyMap data using the MLR models and the
Cog and N content measured by dry combustion
method as standard reference value (Fig. 3). The
validation test gave relations of R%*=0.94##% and
F2=0.64%%%, respectively between the sand and clay
content predicted from the HyMap data using the MLR
models and the sand and clay content measured by sieve
and pipette analysis as standard reference value (Fig. 3).

With both calibration techniques, PLSR and MLR,
we achieved similar results for R* and RMSECV. Some
MLR models are characterized by a slightly better
RMSECV. This is an unexpected result as there is
generally strong multi-collinearity and auto-correlation
between soil and spectral data. These characteristics
have been found to cause a problem when using MLR
but not when using PLSR (Nes et al., 2002) and as a
00n§eguence it was expected that PLSR would give a
S.tatlﬁtlcally better result than MLR. Further investiga-
tion is required of this issue, for which an extended data
et over that used in this study would be necessary. The
relatlve_ly weak regression model for clay content might
b attributed to the relatively narrow range of data
values. The robustness test based on the 12 independent
San}Ple_S gave similar results as the one-leave-out cross-
validation concerning the regression coefficients and
Standard errors. Since this data set was completely
‘;Sependfant .ﬁom the data set used in calibration and
theSS-vahdatlon,.the §rpall statistical differences confirm
resu%teneral applicability of the models. But of course,
. S from suc.:h a small data set can only be an
tripr(;xnm-‘t? estimate of the models robustness and
o hsterability, A more extended number of samples will

Tequired for future studies.

34. dpplication

calgtll;:t optimal calibration models were used to
HyMa © the Corg, Ny, sand and clay contents from the
L P Spectra of each HyMap image pixel. Both the
models ang. the MLR calibration procedures led to
intermsw f‘;{’lza are characterized by comparable results
more L and _RMSECV. As the MLR models were

Sitable for simple grid operations, they were used

to calculate Copp, Ny, sand and clay maps of reference
fields. Resulting topsoil maps show the distributions of
Corgy Ni, sand and clay contents across an 88 ha-sized
reference field as an example. The C,, values (Fig. 4)
range from 1.2% (light color) to 2.5% (dark color). The
N; values (Fig. 5) range from 0.13% (light color) to
0.24% (dark color). The sand values (Fig. 6) range from
10% (light color) to 50% (dark color). The clay values
(Fig. 7) range from 5% (light color) to 20% (dark color).
As silt content supplements sand and clay to 100%
(silt=100-sand—clay), a silt map was just calculated
from the sand and clay map. A silt model was not
attempted to do so far.

In the south-westerly part of the N, map appears an
area with distinctly higher values than in the surround-
ing. But a similar effect does not appear in the Cy,; map.
After studying historical cadastral information it was
found that this area matched ancient boundaries in the
land register. Prior to land consolidation during the
1950s and 1960s, the area consisted of a number of
fields that were independently owned and managed by
different farmers. Enquiries of the local community
revealed the opinion these fields had received signifi-
cantly more dung than was usually applied, prior to
consolidation. If these opinions are correct, then one
possible explanation for the high N; values in the area is
that the historical record of high application of dung and
manure is still recorded in the hyperspectral data and can
be revealed using multivariate analytical techniques
even after the subsequent 40 years of uniform
management practice.

To investigate this effect in greater detail at this
locality, an additional set of 16 samples arranged in
8 pairs across the ancient boundary was taken in the
immediate vicinity of the ancient field boundaries and
was analyzed for Cy and N, by dry combustion method.
The data confirmed that the N, values along the former
field boundaries differ by about 0.015% N; for C,
values lower than 2%. At higher C, values the N;
differences across the boundary were not significant. In
contrast to this no significant differences were found for
the Coyg values at all data pairs accordingly to the visible
pattern in the Coy map. It is concluded from these results
that the organic matter within the sub-field has risen by
the application of dung and manure and has developed a
different composition with higher N; content. But if a
higher C,, content exist in the soil (here at around 2%) a
higher organic matter content did not emerge from the
higher application of dung and manure.

Past management effects were also observed on
fields in other locations within the study area. In many
of these cases the observed differences were within the
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accuracy tolerances of the model (as expressed by the
RMSCV) and as such care must be taken with the
conclusions that can be drawn. However these methods,
and the statistical confidence that can be placed on these
results, are all based on a pixel by pixel analysis, so that
spatial correlation is not taken into account. Thus even
when the results are small in the instance of individual
pixels, when they form patterns that match other
pattems in the Jandscape, then they become important
evidence of historical activities. As a consequence the
method has the potential to be a tool to understand the
historical development of land using practices in an
area, as well as providing the fine resolution soil
mapping required for site specific soil management.

4. Conclusion

This is supposed to be the first study that employed
the HyMap sensor and multivariate regression modeling
for indirect topsoil parameter measurement. This remote
§ensing approach shows the potential benefits of using
image data with carefully located in situ field data in
digital soil mapping. The results also indicate that soil
mapping procedures must be adapted to the soil
parameter of interest and that multivariate calibration
techniques allow calibration modeling as a generic
procedure. With the HyMap spectrometer, the wave-
bapds that are relevant to the mapping of the different
soil parameters can be recorded and used in adapted
ce}libration models to simultaneously predict a suite of
different soil parameters. The method proposed provides
a means of simultaneously estimating topsoil SOM and
fexture in an extensive, rapid and non-destructive
manner, whilst avoiding the spatial accuracy problems
assoclated with interpolation. The use of remotely
sensed data in the manner proposed in this paper can
f‘lSO be used to monitor and better understand the
influence of management and land use practices on
SOM composition and content. In precision agriculture
It can be used to establish the precise spatial locations of
Specific management practices, as a pre-requisite to
much of the modeling and estimation that needs to be
Conducted for variable rate applications.

_The preparation of spatially accurate, high resolution
Soil maps for site specific management is still a matter
that is to be resolved., It has been shown in this work that
h)’p#Specu'al remotely sensed data, combined with field
data in model calibration based on Partial Least-Square

egre§510n or Multiple Linear Regression has the
g:;fnua} to cogu'ibute‘signi.ﬁcantly to the goal of fine-
P e 80.11 mappmg: With this simultaneous, rapid, non-

Structive determination of topsoil SOM and texture

over extended areas, maps of secondary soil attributes,
as aggregate stability or erodibility of soil surface, can
be calculated. Such soil attributes are necessary to be
considered for the appropriate application of different
site specific management activities as variable rate
seeding and fertilization. The results presented in this
study lead us to the suggestion to better amalgamate soil
sciences with remote sensing and multivariate calibra-
tion techniques to improve precision agriculture appli-
cations and SOM monitoring studies in future.
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