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A B S T R A C T

Well-controlled field experiments are used to test agronomic management practices and evaluate the perfor-
mance of cultivars in highly managed plots at experimental stations, in breeding nurseries or on-farm. However,
the performance of crops and therefore the interpretation of experiments is affected by the inherent soil
variability. To avoid large residual errors, replicate measurements or optimized designs are usually helpful but
seldom adequately consider the unknown soil variability. The use of spatial covariates, such as proximally sensed
data, in the statistical modelling of the target variable may provide a better estimate of such experimental
residual variations (errors). Therefore, the purpose of this study was to determine whether the apparent soil
electrical conductivity, topographical parameters and location information (expressed as Gauß-Krüger co-
ordinates) could be used for an enhanced spatial and temporal characterization of the long-term and annual
wheat yields within a static, long-term nitrogen fertilizer experiment that included six different forms of nitrogen
and three levels of nitrogen fertilizer. Furthermore, this investigation aimed to propose statistical strategies for
analysing this background variation by testing ANOVA (Analysis of variance) and ANCOVA (Analysis of cov-
ariance). ANCOVA with soil ECa, location information and topographic parameters as covariates improved the
accuracy of the yield estimates of the multi-annual means for all treatments. Without these independent vari-
ables in ANOVA, the coefficient of determination (R2) was smaller and the root mean square difference (RMSD)
was larger than those of ANCOVA (fertilized plots ANOVA: R2 = 0.19, RMSD = 3.26 dt ha−1; ANCOVA:
R2 = 0.87, RMSD = 1.29 dt ha−1). In addition to the factor level of fertilization and form of nitrogen fertilizer,
ECa was the dominant covariate for the averaged long-term and annual yields. The ECa was measured with
different sensors and configurations and represented a significant independent variable. Of the topographic relief
parameters, the predictor plancurvature was the dominant independent variable. The inclusion of plot-wise,
time-invariant soil and relief parameters significantly improved the discrimination of testing the treatment
performance within the long-term field trial. A further application of this approach to other experimental sites
and breeding nurseries would likely be highly rewarding.

1. Introduction

Field experimentation is the common practice to test hypotheses in
agronomy, breeding, physiology and ecology. Within agricultural field
experiments, exact comparisons of treatments are the primary objec-
tive. Nevertheless, spatial site variability among different plots can
negatively affect the accuracy and efficiency of such trials. To avoid
bias in estimating the influence of tested variables, replications are
mandatory, and optimized designs are adopted for the interpretation of
results. However, even with the best design, soil variability can only be
partially accounted for, even when it is considered.

Whereas large contrasts are relatively easy to detect, many research
questions concern variations that are relatively small. For example,

when comparing different forms of nitrogen at given levels of nitrogen
or the effects of different herbicide or pesticide applications or alter-
natively, relatively uniform lines or cultivars, relatively small differ-
ences can prevent distinguishing among treatments or cultivars.
Ultimately, soil variability, frequently unknown, affects all experi-
mentation to some significant degree. This soil variability is of en-
ormous relevance; for example, different forms of mineral nitrogen may
cause only slight differences in plant growth and final yield (Hu et al.,
2014) or cultivars tested in registration trials may differ by only a few
percentages in their yields (Erdle et al., 2013). Therefore, soil varia-
bility that is not accounted for is clearly an obstacle towards improved
assessments.

Intensive measurements of soil parameters are expensive, and even
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after interpolation; marked point-wise estimation errors may remain.
The spatial variability of soils and yields has largely contributed to the
development of site-specific farming activities, and enormous gains in
information have been obtained and powerful new tools and technol-
ogies to assess the soil and crop variability at the level of the farm field
have emerged (e.g., Schmidhalter et al., 2008; Adamchuk et al., 2004;
Geesing et al., 2014). However, the investigation of the site-specific
variability in dedicated field trials on experimental stations or in
breeding nurseries has largely stagnated, and until recently, soil
variability was only accounted for by optimized field trial designs. In
the literature to date, relatively few reports have used the information
gained from improved detection in dedicated field trials to improve the
understanding of the tested factors or variables.

For that reason, soil conductivity (ECa), topographical parameters
and coordinates are increasingly used as a proxy for soil conditions.
These variables are relatively easy and inexpensive to derive and pro-
duce area-wide, high-density data sets.

Kravchenko et al. (2005) used ECa as an additional variable to in-
crease the accuracy of estimates of phosphorus values in fields with
different levels of manure application, and standard errors for the
means of P concentrations without ECa as a covariate were larger than
those with ECa. In the plots that received no manure and had higher soil
ECa readings, the concentrations of P were significantly lower.

According to Johnson et al. (2005), ECa classification can be used as
a basis for creating block plots only when ECa and yield are correlated.
At the investigated sites, the dominant factors were salinity and clay
content, and the authors described the application of ECa as a “com-
pelling tool in statistical design”.

Lawes and Bramley (2012) explored a new and simple method in
the analysis of strip experiments that combined the spatial variability of
treatment response. The authors applied the spatial distribution of yield
data and a moving pairwise comparison of treatments. The results in-
dicated that the pairwise comparisons adequately identified treatment
differences and their significance. This method can be readily applied
and also used with ECa values and therefore, offers an important ad-
vance to establish in on-farm experimentation.

Brevik, (2012) investigated the use of ECa readings in fields with
more homogeneous soil properties and selected a field of lacustrine-
derived soils with only weak spatial variability in soil properties. Al-
though the highly uniform ECa readings did not differentiate among soil
map units, the ECa results confirmed the uniform status of the soils in
the field, thereby meeting a critical criterion for precision agriculture
applications.

Tarr et al. (2003, 2005) used stratification of ECa and terrain at-
tributes to derive a heterogeneous pasture in relatively homogeneous
sampling zones with fuzzy k-means clustering. The five zones identified
had significant differences in the target variables (i.e., P, K, pH, organic
matter and soil moisture).

Topography is closely related to soil development and soil types and
therefore, is related to the distribution of yield. However, the precision
and direction (Kravchenko et al., 2003) of this relationship differ
strictly with the soil types and their positions on the landscape. On a
site in Andalucía, southern Spain (Lozano-García et al., 2016), the or-
ganic carbon content was higher in the north-position than that in the
other topographic aspects. The topography (primarily elevation, slope,
and aspect) plays a significant role in affecting temperature and
moisture regimes (Bale et al., 1998; Griffiths et al., 2009), and the
differences in microclimate affect the distribution of plant communities
and soil processes (Lenka et al., 2013; Bochet, 2015). Therefore, topo-
graphic aspects should be included in models (Meier and Leuschner,
2010; Ping et al., 2015; Scowcroft et al., 2008) and in estimations at
local and regional scales.

The objective of this research was a comprehensive analysis of a
long-term fertilizer experiment with treatments that included six dif-
ferent forms of N-fertilizer applied at three levels of nitrogen fertiliza-
tion, which included control plots. The principal goal of this paper was

to delineate yields of wheat as influenced by the nominal factors of
fertilization level and fertilizer form and in a second step, by the ad-
ditional metric parameters of ECa, topographic variables and co-
ordinates. Statistical analyses were conducted with ANOVA and
ANCOVA to predict annual and multi-annual means of yields. In this
paper, the evaluation of this 36-year, continuous N-fertilizer experi-
ment is presented.

2. Materials and methods

2.1. General description, soil, and physiography of the Dürnast long-term
study area

The study area is approximately 0.31 ha and is located in Freising,
30 km north of Munich, Germany (4477221.13 E, 5362908.78 N), in a
hilly, Tertiary landscape. The study is a part of the long-term experi-
ment of the Chair of Plant Nutrition from the Technical University of
Munich. The average annual temperature is approximately 7.8 °C, and
the average annual precipitation is 800 mm.

Tertiary sediments with secondary deposits of Pleistocene loess
were the predominant soil material. The composition of the area is a
consequence of Pleistocene loess deposition and subsequent erosion in
the periglacial time period and Holocene erosion and deposition.
According to the German Soil Survey (Bodenkundliche
Kartieranleitung, 2005), fine-silty Dystric Eutrochrept and fine-loamy
Typic Udifluvent are the dominant soil types.

The primary characteristics of the relief and soil parameters are
listed in Table 1. The area has a slight slope in the south direction with
a silt content of approximately 60%. The trend was for clay, C and N to
increase from the south to the north-west of the area. The relatively
high content of C and N in soil layers deeper than 25 cm is evidence of
the erosive processes that formed this area.

2.2. Experimental design

The basic features (i.e., fertilizer amount and form, crop rotation,
and plot size) of the N fertilizer experiment are listed in Table 2. In
Table 3, the years of cultivation with wheat, the cultivars, the amount
of fertilizer applied and the number of replications are presented. In
Figs. 1 and 2, the layout of the experimental field is presented.

Of note, CAN (Calcium ammonium nitrate) was tested twice, and
the control plots that did not receive N-fertilizer were located within
the rows with low and high fertilization. In both cases, the result for
each single plot was used as an independent value in the calculations.

Furthermore after 2006, the experiment was reduced to four re-
plications, identified as a–d.

Table 1
Site description of the long-term nitrogen fertilization experiment in Dürnast.

Site description

Elevation [m] 470 (469–472)
Slope [rad] 0.05 (0.05–0.09)
Aspect [rad] 2.64 (1.97–3.46)

0–25 cm 25–50 cm 50–75 cm
Soil texture [kg

kg-1]
Clay 20.8

(15.7–27.3)
23.3
(15.2–34.9)

26.2
(13.6–34.8)

Silt 61.5
(54.4–67.5)

61.7
(35.7–72.9)

60.7
(32.8–76.8)

Sand 16.6
(11.9–21.3)

14.4 (8.5–40.5) 12.4 (5.3–46.8)

Skeleton 1.2 (0–3.0) 0.6 (0–7.0) 0.4 (0–3.0)
pH 6.44

(5.94–6.84)
6.36
(5.96–7.12)

6.31
(5.98–7.18)

C-content [%] 1.18
(0.94–1.38)

0.56
(0.35–1.14)

0.4 (0.22–1.11)

N-content [%] 0.1 (0.08–0.12) 0.06
(0.03–0.12)

0.04
(0.02–0.12)
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2.3. Data collection

For the derivation of the yield, the following independent para-
meters were used:

(i) experimental cultivation parameters:

– number of fertilizer (control = 0, fertilizer no. 1–6) (Table 2),
– level of fertilization (control = 0, low = 1, high = 2) (Table 3);

(ii) ECa (EM38-v, EM38-h, MK2-v-1.0, MK2-h-1.0, MK2-v-0.5 and
MK2-h-0.5);

(iii) parameters from digital terrain model; and
(iv) position of the plots (expressed as Gauß-Krüger coordinates).

2.4. Yield data

The yield of wheat was determined per plot with a combine har-
vester.

2.5. Apparent electrical conductivity

The ECa was measured with the sensors EM38 and EM38-MK2 on
1st April 2011 in the vertical (v) and in the horizontal (h) configuration
in the experimental field, in addition to in the adjoining experimental
areas. The two sensors differed in their coil spacing, with narrower
spacing allowing for shallower measurements in the soil profile.
Shallower measurements were also obtained with the horizontal mode,
compared with the vertical mode. For further details, see Heil and
Schmidhalter (2015).

The measurements were used to construct six maps that showed ECa

distributions (EM38-v, EM38-h, MK2-v-1.0, MK2-h-1.0, MK2-v-0.5 and
MK2-h-0.5). Based on the recommended practice for conducting such
measurements, the soil water contents were close to or near field

Table 2
Basic features of the long-term N-fertilization experiment.

Begin 1979

N-Fertilizer Form Calcium ammonium nitrate (CAN; twice)
Urea (Ur)
Calcium cyanamide (CC)
Ammonium sulphate (ANS)
Urea ammonium nitrate (UAN)
Ammonium sulphate + nitrification inhibitor (AS+NI)

Crop rotation Potato
Wheat
Barley

Plot size 4 * 8 m

Table 3
Cultivars, amount of fertilizer and number of replicates.

Year Wheat Cultivar N-fertilizer [kg ha−1] No. of replications

Low High Control Fertilized plots

1980 Winter Caribo 100 150 12 6
1983 Winter Caribo 100 150 12 6
1986 Winter Kronjuwel 100 150 12 6
1989 Winter Obelisk 100 150 12 6
1992 Winter Orestis 100 150 12 6
1995 Winter Astron 100 150 12 6
1998 Winter Astron 100 150 12 6
2001 Winter Ludwig 100 150 12 6
2004 Winter Tommi 140 180 12 6
2007 Winter Tommi 140 180 8 4
2010 Winter Tommi 140 180 8 4
2012 Spring Kadrilj 120 180 8 4

Fig. 1. Schematic representation of the experimental area with the distribution of the fertilized and control plots per replication.
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capacity, as determined by the German Weather Service data for the
region (unpublished data from the station Weihenstephan). The ECa

values were recalculated to electrical conductivity values at 25 °C using
the equation developed by Sheets and Hendrickx (1995).

In the next step, the ECa data were interpolated using a GIS soft-
ware. Continuous maps of all ECa values were obtained using experi-
mental omnidirectional semivariograms and ordinary kriging (OK)
(Table 4).

The semivariogram models were also evaluated for anisotropy (di-
rection-dependent trend in the data) and hole effects. Although direc-
tional semivariograms and visual inspections did not reveal detectable
trends and drifts, the occurrence of hole effects was obvious. Therefore,
the range of the semivariograms was limited to the first ridge of the
curve progression.

With the kriging method and appropriate semivariogram models,
ECa readings were interpolated in maps with 2-m grids (Fig. 3).

2.6. Digital terrain model

Elevation grid data of the area (approximately 400 ha) with a grid
size of 2 m was obtained from the Agency for Digitisation, High-Speed
Internet and Surveying (Munich).

Additional different primary and secondary complex relief attribute
parameters were calculated with the software package System for
Automated Geoscientific Analyses (SAGA, produced by Scilands GmbH
Göttingen, www.scilands.de). The following variables were used in the
statistical calculations:

elevation (ELEV) [m]; slope gradient (SG) [radian]; aspect (ASP)
[radian]; upslope catchment area (CA) [m2]; topographical wetness
index (TWI) [−]; plancurvature (PLC) [−]; profilecurvature (PRC)
[−]; convergence (CON) [%]; LS-factor (LSF) [−]; channel network
base level (CNBL) [−]; vertical distance to channel network (VDCN)
[−]; valley depth (VD) [m]; and relative slope position (RSP) [−].

Fig. 2. Georeferenced arrangement of the experimental area showing the distribution of the N-fertilizer treatments (Abbreviations, see Table 2) and indicating the low (N1) or high (N2)
fertilized treatments.

Table 4
Results of the semivariance analysis indicating the ECa spatial variability by showing the variogram model selected and the model parameters determined (nugget (C0), sill (partial C), and
range for the v- and h-mode measurements of EM38 and EM38-MK2) (Time of measurement: 1st April 2011). Averaged ECa values of each plot are indicated in Fig. 4.

Instru-ment Mode,
Coil orienta-tion

Kriging Model Trans-formation C0 Partial C Range Lag size Number of lags

EM38 v Ordinary Gaussian None 5.2 65.4 56 2 28
h Ordinary Gaussian None 0.002 0.0004 76 4 19

EM38-MK2 v-1.0 Ordinary Gaussian None 5.18 63.64 76 4 19
h-1.0 Ordinary Gaussian ^−1.1 2.08E-6 2.1E-5 62 2 31
v-0.5 Ordinary Gaussian None 6.5 51.53 71.64 4.2 19
h-0.5 Ordinary Gaussian ^−1.8 2.84E-8 1.1E-7 54 2 27
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2.7. Construction of the data set for calculations

Within the border of each plot, ECa (Figs. 3 and 4) and terrain
variables were averaged. The position parameter Gauß-Krüger was
determined for each plot.

Yield values, experimental cultivation parameters, ECa readings,
terrain variables and position (Gauß-Krüger coordinates) were com-
bined into one data set as a final step.

From the beginning of the experiment in 1979 until 2006, each
experimental treatment receiving different fertilizer forms had six

replications (replications a–f; Fig. 1). In 2007, the number of replica-
tions was reduced to 4 (replications a-d; Fig. 1), and the number of
control plots was reduced from 12 to 8.

2.8. Statistical analyses

Statistical analyses were conducted with the SPSS 21.0 statistical
software package. To address the objectives of the study, linear multi-
variate regression (REG), analysis of variance (ANOVA) and analysis of
covariance (ANCOVA) were used.

Fig. 3. Map of interpolated ECa readings (mS m−1) obtained from the MK2-v-1.0 in a 2-m grid and the borders of field experiment 020.

Fig. 4. Boxplots of the multi-annual yields (averages from 1980 to 2012) separated for control plots (0 N) and fertilizer level and fertilizer form.
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The theoretical model of the REG is

y = bo + b1 * x1 + b2 * x2 + bn * xn + e,

where the response variable (y) represents the yield of wheat; bn is the
empirical regression model coefficient; xn represents terrain attributes,
ECa, and fertilizing parameters and e is the residual error component
associated with the model.

The 0.05 level of significance (Kolmogorov–Smirnov, with the sig-
nificance correction after Lilliefors) was used with normally distributed
(partly with transformations) parameters. For non-normal data, the
variables were transformed (Box–Cox transformations). Multiple re-
gression models require that the following four primary assumptions be
met: homoscedasticity (homogeneity of variance), no multicollinearity
(two independent variables are highly correlated), normally distributed
residuals, and independence of the residuals (no autocorrelation in
regression residuals). All regression formulas met these criteria. These
assumptions were tested with the following procedures:

– autocorrelation of regression residuals: Durbin–Watson test;
– homoscedasticity: plot of residuals against predicted values;
– normally distributed residuals: p–p plot; and
– multicollinearity: tolerance, variance inflation factor (VIF).

The theoretical model of ANOVA is
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SSA sum of squares of the treatments
SSR sum of squares of the error
l number of treatments (no. of fertilizer form, N-fertilizer level = 2)
n number of cases (control plots and fertilized plots = 96)
x mean of the data set (mean of all 96 plots)
xi mean of the i-group (mean of each single group)
i number of groups (= 16 groups)
J number of measurements (= 1, measurement in the case of multi-

annual mean yield)
j j-measurement (= 1, first measurement in the case of multi-annual

mean yield)
When the SSA is higher than the SSR, the F-value is higher, and high

F-values indicate significant differences among effects.
Analysis of covariance (ANCOVA) combines features of both

ANOVA and REG. ANCOVA combines the ANOVA model with one or
more additional quantitative variables (covariates), which are related
to the target variable. The covariates are included to reduce the var-
iance in the error terms and provide a more precise measurement of the
treatment effects.

Continuous variables (ECa, relief parameters) are not part of the
primary experimental manipulation but have an influence on the target
variable.

The following five assumptions underlie the use of ANOVA and
ANCOVA (Kutner et al., 2005):

– The residuals (error terms) are normally distributed (KS-test).
– The error variances are equal for different treatment classes
(homogeneity of variances, tested with the Levene test).

– The relationship between the dependent and independent variables
must be linear (plotting a grouped scatterplot of the covariate and
the dependent variable).

Fig. 5. Spatial distribution of the multi-annual yields of wheat according to the experimental design (Figs. 1 and 2).
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– The error terms are uncorrelated (independent; plotting a scatter-
plot of the standardized residuals against the predicted values).

ANCOVA has two additional important requirements:

– Homogeneity of regression slopes is required, i.e., the slopes be-
tween covariates and dependent variables within groups must be
similar (parallel among groups for homogeneity of regression
slopes), with the best test of this assumption to plot a scatterplot for
each experimental condition between the covariate and the outcome
(Field, 2012).

– Independence of the covariate and treatment effects, i.e., no

difference occurs in the covariates among the groups in the analysis.

In the calculations for this study, the ANOVA procedure was as
follows:

= + − + −

+ − − +

y Factor N level Factor N fertilizerform

Factor N level Factor N fertilizerform e

μ ( ) ( )

( )* ( )

The extension to the ANCOVA procedure was the following:

Fig. 6. Map of plot wise ECa readings (mS m−1) obtained from the EM38 and MK2 in all configurations of the field experiment 020.
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= + − + −

+ − − + +

+ +

y Factor N level Factor N fertilizerform

Factor N level Factor N fertilizerform

μ ( ) ( )

( )* ( ) ECa relief *

Position e,

where y is the yield, μ is the overall mean of the yield, factor (N-level)
and (N-fertilizer form) reflect the effects of quantity and form of the
fertilizer and e is the error term.

The term relief* includes the topographical parameters listed above.
Position describes the Gauß-Krüger coordinates of the plots.

First, the calculations were conducted with the multi-annual means
of the yields (averages from 1980 to 2012) within the following
scheme:

1. Overall derivation of yields for all plots with ANOVA and ANCOVA.
2. Derivation of yields only for the control areas with REG.
3. Derivation of yields for the fertilized plots with ANOVA and

ANCOVA.

Second, steps 2 and 3 were used for the calculation of the respective
annual yield.

In the last step, the predicted values were tested against the mea-
sured values with RMSD (root mean square difference):

∑= ⎡

⎣
⎢ − ⎤

⎦
⎥

=

RMSD N Z Z1/ ( *)
i

N h

si si
1

( )
2

0.5

where N represents the site, zsi represents the observed value, and z*si
represents the predicted value.

The RMSD is a measure of the accuracy of the prediction calcula-
tion, and this value is small for an unbiased prediction.

3. Results

3.1. Modelling of averaged multi-annual means of yield

The evaluation concentrated first on the multi-annual yield. An
overview is given in Fig. 4 with boxplots calculated for each level of
fertilizer and fertilizer form and in Fig. 5, which shows the spatial
distribution of the yields in the 96 plots. The high level of N fertilization
did not produce considerably higher yields. The yield of non-fertilized
plots was 35 dt*ha−1, which was approximately half of the yield of
fertilized treatments. The map of the yields shows a weak spatial in-
crease (both control and fertilized plots) from the south border to the
northwest corner. A contrasting trend is identifiable for the ECa read-
ings of both devices and for all configurations (Fig. 6). Values were
decreased by about 22 mS m−1 and were nearly on the same level. Only
in the case of the EM38-v the decrease was with 11 mS m−1 less pro-
nounced.

The average values are characterized by a decrease from EM38-v,
MK2-v-1.0m, EM38-h, MK2-h-0.5m, MK2-h-1.0 m to MK2-v-0.5m.

According to the ANOVA results in Table 5, only the level of

Table 5
Results of ANOVA and ANCOVA for the multi-annual means of yield.

Calculation data,
N

Target
variable

Model and effects F Sig. Partial eta-quadrat Adj. R2 RMSD

Data from all plots; Yield Adjusted model 64.317 0.000 0.917 0.903 3.55
Independent [dt ha −1] Constant 25623.09 0.000 0.997
variables: factors , mean Fertilization level 20.895 0.000 0.205
fertilization level 1980–2012 Fertilizer no. 0.882 0.512 0.061
fertilizer no. Fertilization level * 0.184 0.981 0.013

Fertilizer no.
Data from all plots; ,

N = 96
Yield Adjusted model 347.917 0.000 0.986 0.98 1.46

Independent [dt ha −1] Constant 4468.768 0.000 0.983
variables: factors mean ECa (MK2-h-0.5) 329.344 0.000 0.807
fertilization level 1980–2012 Catchment 6.974 0.010 0.081
fertilizer no., and Fertilization level 165.877 0.000 0.677
covariates (ECa, Fertilizer no. 4.492 0.001 0.254
topographic Fertilization level * 1.013 0.423 0.071
parameters, location Fertilizer no.
(Gauß-Krüger
coordinates)
N = 96

Fig. 7. Comparison of measured and modelled ANOVA (left) and ANCOVA (right) yields.
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fertilization was a significant influencing factor, and the interaction
between the factors fertilizer amount and fertilizer form was not sig-
nificant. Nevertheless, a high R2 was reached, although with a

relatively high RMSD (3.55 dt ha−1).
The significant components of the ANCOVA procedure showed a

modified picture. With ANCOVA, both factors in combination with ECa

(MK2-h-0.5) and the catchment attribute (CA) produced a very high R2

and a low RMSD (1.46 dt ha−1). In Fig. 7, the measured and the
modelled values are compared (1:1 relationship). As the figures clearly
demonstrate, the high R2 for both procedures was produced by the low
values of the control plots. In contrast to ANOVA, ANCOVA, which
included continuous variables, showed a more realistic picture, in ad-
dition to a low RMSD.

According to the partial eta2, the primary parameters of influence in
ANCOVA were ECa, followed by the level of fertilization. At lower ECa

values, the yields were higher, and this negative relationship (Fig. 8)
was detected with the different configurations of both sensors. Re-
markably, the curves had similar slopes; therefore, ECa (MK2-h-0.5)
could be replaced by the other measurements of conductivity. However,
this does not apply to EM38-v because of a lower R2 and divergent
slope, which is caused, at least in part, by the smaller range of the ECa

readings.
For more detailed insight into the variables that influenced yield,

the multi-annual data set was divided into control (non-fertilized) and
fertilized data.

The modelling of the yield of the control plots (N-level = 0, no. of
fertilizer = 0) was performed with REG in two forms, with all con-
tinuous independent variables and only with ECa.

For both models, the R2 and RMSD indicated that the results were
acceptable. In the first calculation, the significant variables were CNBL
and PLC. However, the prediction of the yield was also satisfactory for
the non-fertilized treatment with only ECa (MK2-h-1.0) (Table 6).

According to ANOVA, the fertilization level was the only factor of
influence, but the result was poor (R2 = 0.19, RMSD = 3.26 dt ha−1).
In contrast to this result, in ANCOVA, which included the factors fer-
tilization level and fertilization no. and the covariate ECa (MK2-h-0.5),
ECa was followed by fertilization level as dominant parameters. With
R2 = 0.87 and RMSD = 1.29 dt ha−1, ANCOVA was a significant im-
provement in comparison with ANOVA (Table 7, Fig. 9).

3.2. Modelling of annual yields

A great range in R2 and RMSD values characterized the regressions
of the annual yields of the control plots (Table 8). With the 1992 and
2010 yields excluded, the R2 values were higher than 0.65. The best fit
was reached in 1989, 1991, 2001 and 2012, which were also char-
acterized by more predictors.

Remarkably, in 11 of 12 calculations, ECa values measured with
different sensors and configurations represented significant in-
dependent variables (MK2-h-0.5, EM38-v, MK2-h-1.0). The plancurva-
ture was the dominant predictor among the relief parameters.

The modelling of the yield of the fertilized plots resulted in the
following observations (Table 9):

The ANOVA procedures resulted in relatively poor simulation re-
sults in most cases, with R2 values ranging between 0.008 and 0.58 and
those of RMSD ranging from 1.26 to 13.6 dt ha−1.

– The significant predictors were primarily the fertilization level and
to a minor degree, also the fertilizer form.

– The accuracies were higher when the fertilizer form was included in
the models (1980, 1986, 1992, 2012).

– The introduction of the covariates clearly improved the quality of
the simulations, particularly for 1995, 1998, 2001, 2004 and 2010.
The R2 increased to 0.43-0.85, and the RMSD decreased to ap-
proximately 1–5 dt ha−1.

– The ECa was included in nine calculations, primarily as MK2-h-0.5
but also as MK2-v-0.5, MK2-v-1.0, EM38-v and EM38-h.

– In addition to the aspect, the more three-dimensional parameters
convergence, valley depth, and LS-factor also influenced the yield.

Fig. 8. Relationships between ECa and yields for the control and the fertilized plots with
low and high levels of N fertilizer.
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– The interaction (Fertilization level*Fertilizer no.) was a significant
contribution to the simulations only in ANCOVA (1980, 1995,
2001).

– The variation in the yield in 1992, 2004 and 2007 corresponded
with higher RMSD values.

With 1983 and 2010 excluded, the form of fertilizer was a sig-
nificant contribution to the simulation of the yield; however, this factor
was a significant influence only in ANCOVA. The influence of specific
fertilizer forms must be analysed in subsequent work.

4. Discussion

Field experiments simultaneously investigate the effect of one or
more input variables (factors) on one or more output variables

(response) and consist of measurements for which purposeful changes
(e.g., fertilization levels, cultivars) are part of the input variables. All
the unrecognized and extraneous variation contribute to experimental
errors, and the inherent soil variability tends to mask the outcome of
such field experiments. Although it is frequently assumed that the field
or parts of it are generally homogeneous, and therefore, the conditions
for plant growth are similar, this assumption usually remains untested.

Conventional soil investigations are expensive and time-consuming,
and therefore, experimental areas are arranged in a specific manner.
Blocking of the experimental area is frequently used to account for
experimental errors. The hypothesis is that the influence of soil het-
erogeneity should on average be similar in all treatment plots within
the entire experiment. In some investigations, the use of a covariate in
the statistical evaluation is possible to reduce the level of soil-related
errors.

In this study, a conventional investigation was expanded by testing
the added value of a non-invasive geophysical characterization of the
field site of a long-term experiment. To the best of our knowledge, this
study is the first to include such a geophysical characterization of a
long-term study, which may also permit ex-post analysis of previous
experiments. The static character of the tested factors, apparent elec-
trical conductivity and topographical features was essential. Therefore,
the soil conductivity (ECa), coordinates of the plots and topographical
parameters were used as proxies for soil conditions. These variables
were relatively easy and inexpensive to derive and also remained more
or less stable over time.

Based on the relationship between the yield and tested covariates
for the non-fertilized plots, the data obtained from the geophysical
sensor MK2-h-0.5, measured in the horizontal mode at the 0.5 m coil
distance mode, and the topography attribute plan curvature (PC) were
the primary predictors.

Compared with standard ANOVA, the R2 and RMSD values of
ANCOVA improved with soil ECa and topographic parameters as

Table 6
Simulation of the yield (means of the years 1980–2012) with REG of the control plots.

Target variable Predictors Regression
coefficients

Sig. Standard. beta-coeff. Adj. R2 sig. RMSD

Control, N = 12 (independent variables: ECa, topographic parameters, location information(Gauß-Krüger))
Wheat mean (1980–2012) [dt ha−1]^2 65798.14 0.000 0.96*** 1.04

Channel network [m]^3 −0.000618 0.000 −0.885
Plancurvature [−] 30,766.741 0.009 0.218

Control, N = 12 (independent variables: ECa)
Wheat mean (1980–2012) [dt ha−1]^3 −43585.695 0.006 0.84*** 2.15

ECa (MK2-h-1.0) [mS m−1] (1/x) 29,79,297.639 0.000

Table 7
Simulation of the yield (means of the years 1980–2012) with ANOVA and ANCOVA with the factors fertilization level and fertilizer no. and the covariates ECa, relief parameters and
coordinates.

Calculation data,
N

Target
variable

Model and effects F Sig. Partial eta-
quadrat

Adj. R2 RMSD

Data from fertilized plots; Independent variables: factors fertilization
level, fertilizer no.

Yield Adjusted model 2.451 0.008 0.313 0.185 3.26
[dt ha −1] Constant 33,300.233 0.000 0.998
mean
1980–2012

Fertilization level 24.398 0.000 0.258

Fertilizer no. 1.029 0.414 0.081
N = 84 Fertilization level *

Fertilizer no.
0.215 0,971 0.018

Data from fertilized plots;
Independent variables: factors fertilization level, fertilizer-no.,
covariates (ECa, topographic parameters, location (Gauß-Krüger
coordinates),

Yield Adjusted model 42.6 0.000 0.896 0.875 1.29
[dt ha −1]^3 Constant 4.378 0.040 0.060
mean
1980–2012

Fertilization level 221.457 0.000 0.762

Fertilizer no. 6.229 0.000 0.351
Fertilization level *
Fertilizer no.

1.362 0.242 0.106

N = 84 ECa (MK2-h-0.5) 383.966 0.000 0.848

Fig. 9. Comparison of measured and modelled ANCOVA (Table 6) yields.
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covariates (fertilized plots, ANOVA: R2 = 0.18, RMSD = 3.26 dt ha−1;
ANCOVA: R2= 0.87, RMSD = 1.29 dt ha−1). In addition to the factors
of the fertilization level and fertilizer form, the dominant covariate in
ANCOVA was ECa (MK2-h-0.5). Similar results were obtained in the
derivations of the single years, primarily for MK2-h-0.5 but also EM38-v
and MK2-h-1.0. The predictor plancurvature was the dominant relief
parameter.

Different conclusions were reached regarding the treatment effects
and covariates:

– The position of the plots had no influence on the distribution of the
yield.

– The relationships between ECa and yield were negative; thus, high
ECa was an indication of low yield.

– The influence of ECa and the relief parameters on the yields in-
dicated that the site-specific growing conditions were not homo-
geneous in this relatively small investigation area.

– The dominance of ECa (MK2-h-0.5) led to the conclusion that shal-
lower soil layers contributed more to the variability in the yield than
that of the deeper soil layers.

– The increased 3-dimensional relief parameters were a significant
influence, which indicated that the slope character of this area in-
creased the site heterogeneity.

The metric variable ECa had significant explanatory power with
respect to the variability of the wheat yields. The curve progressions
between ECa and yield led to further interpretations:

– ECa was the primary influence on the spatial distribution of the yield
across the field. The treatment effects (fertilization level, fertilizer
form) were overlaid on soil conditions with different ECa values.

– The level of fertilization was a secondary influence on the size of the
yield.

– The differences in yield among the forms of fertilizers were not
significant, indicating the lower importance of the fertilizer form.

At the investigated site, the soil texture (primarily clay and sand),
water content, bulk density and conductivity of the pore water (un-
published data) influenced the soil ECa (EM38 and EM38-MK2). Lower
ECa values corresponded with lower elevations and higher catchment
areas and soils with more silt (silt: 67 kg kg−1; clay: 16 kg kg−1; sand:
16 kg kg−1; skeleton: 2 kg kg−1; near the southern border), whereas
higher ECa readings were detected in soils at higher elevations with
more clay (clay: 26 kg kg−1; silt: 56 kg kg−1; sand: 17 kg kg−1; ske-
leton: 3 kg kg−1; near the northern border). Additionally, soils with a
lower ECa value had higher contents of C and N.

The site-specific yield potentials increased in soils with a higher
content of silt in combination with a higher content of organic matter.
The positive influence of the increased plant available water holding
capacity on the yield and yield potential is well known and has been
derived as the primary explanatory factor for field site-specific yield
differences (Geesing et al., 2014).

The close ECa-yield relationships in this study were in contrast to a
previous study in which only weak relationships between the apparent
electrical conductivity and yield were observed for generally

Table 8
Simulation of the annual yield from 1980 to 2012 with REG of the control plots and the independent variables ECa and relief.

Control, N = 12 (independent variables: ECa, topographic parameters, location (Gauß-Krüger coordinates))

Target variable Year Predictors Regression
coefficients

Sig. Standard. beta-coeff. Adj. R2 sig. RMSD

Yield [dt ha −1] (1/x) 1980 Constant 0.015 0.000 0.76 3.36
ECa (MK2-h-0.5)^3 1.034e–007 0.000 0.987 ***
Plancurvature^2 −165.123 0.006 −0.594

Yield [dt ha −1] (1/x) 1983 Constant 0.019 0.000 0.76 3.98
ECa (MK2-h-0.5)^3 2.801e-007 0.000 0.882 ***

Yield [dt ha −1] (1/x) 1986 Constant 0.077 0.005 0.66 4.22
ECa (MK2-h-0.5) (1/x) 2.587e-007 0.001 0.859 **
Aspect (1/x) −0.161 0.022 −0.510

Yield [dt ha −1]
(log10)

1989 Constant 18.428 0.97 0.75
Channel network −1.56e-007 0.000 −1.538 ****
base level
1/ECa (EM38-v) −24.77 0.000 −0.693
Profile curvature 1.144 0.039 0.128

Yield [dt ha −1]^3 1992 Constant 23735.88 0.423 0.737 0 8.83
LS-factor 28628.03 0.006 0.50

**
Yield [dt ha −1]

(1/x)
1995 Constant −0.092 0.019 0.95 1.36

sqrt(ECa) (MK2-h-0.5) 0.016 0.003 0.952 ***
Catchment area (1/x) 1.032 0.001 0.604
ECa (MK2-v-0.5) (1/x) 0.827 0.017 0.646
Plancurvature ^3 −26850.9 0.045 −0.250

Yield [dt ha −1]^3 1998 Constant −1,26,807.08 0.001 0.82 3.59
1/ECa (EM38-v) 66,10,447.2 0.000 0.914 ***

Yield [dt ha −1] (log10) 2001 Constant 1.862 0.000 0.93 2.21
ECa (MK2-h-0.5)^2 −0.000328 0.000 −1.113 ***
ECa (EM38-v)^3 4.952e-006 0.002 0.693
Valley depth −1.764 0.010 −0.328
Plancurvature 4,59,810.23 0.047 0.241

Yield [dt ha −1]
log(10)

2004 Constant 3.3431 0.000 0.80 4.53
ECa (MK2-h-1.0) −1.16 0.004 −0.655 **
LS-factor −0.303 0.040 −0.396

Yield [dt ha −1]^3 2007 Constant −5,81,865.19 0.009 0.74 6.68
1/ECa (EM38-v) 2,89,29,462.2 0.006 0.862 **

Yield [dt ha −1]^3 2010 Constant 130118.068 0.008 0.46 4.26
ECa (EM38-v)^3 −0.926 0.040 −0.73 *

Yield [dt ha −1] 2012 Constant 66.602 0.000 0.904 0.71
ECa (EM38-v) −0.823 0.001 −0.959 **
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Table 9
Simulation of the annual yield from 1980 to 2012 with ANOVA and ANCOVA with the factors fertilization level and fertilizer-no. and the covariates ECa, relief parameters and
coordinates.

Data from fertilized plots; Independent variables: factors fertilization level, fertilizer-no. N = 84

Target
Variable

Year Model and effects F Sig. Partial eta-quadrat Adj. R2 RMSD

Yield
[dt ha−1]

1980 Adjusted model 4.109 0.000 0.433 0.328 3.08
Constant 31,258.88 0.000 0.998
Fertilization level 9.847 0.002 0.123
Fertilizer no. 5.446 0.000 0.318
Fertilization level*Fertilizer no. 1.816 0.108 0.135

Yield
[dt ha−1]

1983 Adjusted model 3.175 0.001 0.371 0.254 3.34
Constant 24598.810 0.000 0.997
Fertilization level 27.356 0.000 0.281
Fertilizer no. 1.254 0.290 0.097
Fertilization level*Fertilizer no. 1.066 0.392 0.084

Yield
[dt ha−1]^3

1986 Adjusted model 9.846 0.000 0.646 0.581 1.26
Constant 17246.367 0.000 0.996
Fertilization level 25.353 0.000 0.250
Fertilizer no. 16.704 0.000 0.589
Fertilization level*Fertilizer no. 0.736 0.622 0.059

Yield
[dt ha−1] ^3

1989 Adjusted model 3.139 0.001 0.368 0.251 4.70
Constant 2635.926 0.000 0.974
Fertilization level 35.527 0.000 0.317
Fertilizer no. 0.920 0.486 0.073
Fertilization level*Fertilizer no. 0.458 0.837 0.038

Yield
[dt ha−1]^2

1992 Adjusted model 3.270 0.001 0.378 0.262 4.11
Constant 7675.400 0.000 0.991
Fertilization level 19.291 0.000 0.216
Fertilizer no. 3.549 0.004 0.233
Fertilization level*Fertilizer no. 0.321 0.924 0.027

Yield
[dt ha−1] (1/x)

1995 Adjusted model 1.048 0.417 0.163 0.008 5.20
Constant 8742.404 0.000 0.992
Fertilization level 5.530 0.022 0.073
Fertilizer no. 1.073 0.387 0.084
Fertilization level*Fertilizer no. 0.277 0.946 0.023

Yield
[dt ha−1]

1998 Adjusted model 2.191 0.019 0.289 0.157 3.84
Constant 25,119.760 0.000 0.997
Fertilization level 18.383 0.000 0.208
Fertilizer no. 1.372 0.238 0.105
Fertilization level*Fertilizer no. 0.313 0.928 0.026

Yield
[dt ha−1]^3

2001 Adjusted model 2.675 0.004 0.332 0.208 13.6
Constant 860.275 0.000 0.925
Fertilization level 19.851 0.000 0.221
Fertilizer no. 1.849 0.102 0.137
Fertilization level*Fertilizer no. 0.639 0.698 0.052

Yield
[dt ha−1]

2004 Adjusted model 0.762 0.697 0.124 0.039 6.30
Constant 14,937.152 0.000 0.995
Fertilization level 4.953 0.029 0.066
Fertilizer no. 0.704 0.648 0.057
Fertilization level*Fertilizer no. 0.121 0.994 0.010

Yield
[dt ha−1]

2007 Adjusted model 1.808 0.074 0.359 0.160 6.30
Constant 8234.419 0.000 0.995
Fertilization level 9.717 0.003 0.188
Fertilizer no. 2.078 0.076 0.229
Fertilization level*Fertilizer no. 0.219 0.969 0.030

Yield
[dt ha−1]

2010 Adjusted model 0.799 0.657 0.198 0.050 3.00
Constant 25,320.336 0.000 0.998
Fertilization level 3.477 0.069 0.076
Fertilizer no. 0.355 0.903 0.048
Fertilization level*Fertilizer no. 0.797 0.578 0.102

Yield
[dt ha−1] (log10)

2012 Adjusted model 6.633 0.000 0.672 0.571 2.63
Constant 3,51,125.040 0.000 1.000
Fertilization level 67.937 0.000 0.618
Fertilizer no. 2.503 0.037 0.263
Fertilization level*Fertilizer no. 0.546 0.770 0.072

Data from fertilized plots; Independent variables: effects fertilization level, fertilizer-no., and covariates (ECa, topographic parameters, location information (Gauß-Krüger
coordinates)); N = 84

Target Year Model and effects F Sig. Partial eta- Adj. R2 RMSD

Yield
[dt ha−1]

1980 Adjusted model 5.126 0.000 0.531 0.427 2.80
Constant 1403.646 0.000 0.954
Fertilization level 9.658 0.003 0.148

(continued on next page)
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Table 9 (continued)

Data from fertilized plots; Independent variables: effects fertilization level, fertilizer-no., and covariates (ECa, topographic parameters, location information (Gauß-Krüger
coordinates)); N = 84

Target Year Model and effects F Sig. Partial eta- Adj. R2 RMSD

Fertilizer no. 4.984 0.000 0.305
Fertilization level*Fertilizer no. 2.354 0.040 0.172
Aspect^3 11.805 0.001 0.148
Convergence (1/x) 1.814 0.050 0.026

Yield
[dt ha−1]^2

1983 Adjusted model 7.467 0.000 0.674 0.584 2.39
Constant 84.666 0.000 0.566
Fertilization level 46.559 0.000 0.056
Fertilizer no. 0.637 0.700 0.236
Fertilization level*Fertilizer no. 1.298 0.271 0.107
Convergence (1/x) 5.399 0.023 0.077
Convergence ^3 5.852 0.018 0.083
Valley depth (1/x) 13.445 0.000 0.171
ECa (EM38-v)^3 5.439 0.023 0.077
ECa (MK2-h-0.5) (log10) 33.075 0.000 0.337

Yield
[dt ha−1] (log10)

1986 Adjusted model 10.070 0.000 0.690 0.621 1.12
Constant 1,39,973.947 0.000 1.000
Fertilization level 28.995 0.000 0.299
Fertilizer no. 13.611 0.000 0.546
Fertilization level*Fertilizer no. 0.676 0.669 0.056
LS-factor^3 13.014 0.001 0.161
Aspect^3 8.146 0.006 0.107

Yield
[dt ha−1]^2

1989 Adjusted model 14.712 0.000 0.764 0.712 2.98
Constant 443.109 0.000 0.867
Fertilization level 105.779 0.000 0.609
Fertilizer no. 2.755 0.019 0.196
Fertilization level*Fertilizer no. 1.170 0.333 0.094
Valley depth^3 75.18 0.000 0.525
Analytical hill hillschading^3 10.81 0.002 0.137

Yield
[dt ha−1]^3

1992 Adjusted model 19.465 0.000 0.798 0.757 2.45
Constant 253.965 0.000 0.786
Fertilization level 81.477 0.000 0.541
Fertilizer no. 9.634 0.000 0.456
Fertilization level*Fertilizer no. 1.195 0.319 0.094
ECa (MK2-h-0.5) (log10) 142.533 0.000 0.674

Yield
[dt ha−1]^3

1995 Adjusted model 16.695 0.000 0.811 0.763 2.39
Constant 196.478 0.000 0.749
Fertilization level 47.841 0.000 0.420
Fertilizer no. 3.489 0.005 0.241
Fertilization level*Fertilizer no. 2.576 0.027 0.190
ECa (MK2-h-0.5)^3 47.939 0.000 0.421
LS-factor^3 5.624 0.021 0.079
Aspect^3 29.705 0.000 0.310
LS-factor (1/x) 19.773 0.000 0.231

Yield
[dt ha −1]

1998 Adjusted model 22.934 0.000 0.835 0.799 1.85
Constant 135.277 0.000 0.665
Fertilization level 109.121 0.000 0.616
Fertilizer no. 3.496 0.005 0.236
Fertilization level*Fertilizer no. 1.504 0.190 0.117
ECa (MK2-v-1.0) (1/x) 16.282 0.000 0.193
Channel network base level^3 108.263 0.000 0.614

Yield
[dt ha −1] (1/x)

2001 Adjusted model 27.412 0.000 0.881 0.849 2.47
Constant 19.647 0.000 0.238
Fertilization level 103.829 0.000 0.622
Fertilizer no. 9.760 0.000 0.482
Fertilization level*Fertilizer no. 2.576 0.027 0.197
LS-factor^3 4.987 0.000 0.073
Aspect^3 32.861 0.000 0.343
ECa (EM38-h) (1/x) 212.46 0.000 0.254
sqrt(ECa) (MK2-h-0.5) 92.819 0.000 0.596

Yield
[dt ha −1]^2

2004 Adjusted model 29.365 0.000 0.866 0.837 2.48
Constant 3.733 0.058 0.052
Fertilization level 63.126 0.000 0.481
Fertilizer no. 4.248 0.001 0.273
Fertilization level*Fertilizer no. 0.786 0.584 0.065
ECa (MK2-h-0.5) (1/x) 44.151 0.000 0.394
sqrt(valley depth) 5.899 0.018 0.080

Yield
[dt ha −1]^3

2007 Adjusted model 4.580 0.000 0.610 0.477 5.27
Constant 501.880 0.000 0.924
Fertilization level 25.718 0.000 0.385
Fertilizer no. 2.440 0.041 0.263
Fertilization level*Fertilizer no. 0.498 0.806 0.068
ECa (MK2-v-0.5)^3 22.187 0.000 0.351
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K. Heil, U. Schmidhalter European Journal of Agronomy 89 (2017) 1–15

13



homogeneous soil sites (Neudecker et al., 2003). However, by focusing
on heterogeneous field sites as part of a Germany-wide study to de-
lineate management and yield zones for site-specific management ac-
tions, generally close relationships between ECa values and yields were
observed, with R2 values ranging from 0.15 to 0.71. Furthermore, no-
tably, in this experimental area, the relationships were always negative,
which indicated that sandy soils that typically have low ECa readings in
combination with low yields were absent.

Based on previous studies, various factors influence growth and may
contribute to differences in yield on large heterogeneous field sites
varying in size up to 100 ha; however, the influence of plant available
water is the most influential factor (Selige and Schmidhalter 2001;
Schmidhalter et al., 2008).

Furthermore, in particular, the terrain parameters CA, PLC, CON,
VD and LSF were the most common significant predictors. With higher
biomass produced in flat locations, attributes associated with water
accumulation and water availability played an important role in wheat
production.

ANCOVA analysed multiple direct and indirect relationships among
the studied factors, and we expect that this approach has great potential
for this type of evaluation in agricultural research because ANCOVA is
an easy way to identify multiple factors interacting simultaneously.

In contrast to the site in this study, which was characterized by a
modest slope, in flat fields, topographic attributes are not likely to be
influential. In those fields, ECa measurements should primarily be
tested for their potential to explain site-specific differences that account
for residual errors in statistical models.

As an alternative to the tested proxies, proximal or aerial remote
sensing is also a feasible approach to delineate growth and the resulting
yield differences on experimental field sites (Neudecker et al., 2001).
Whereas this approach is frequently evaluated on heterogeneous field
sites, the adoption to highly managed plots on experimental stations or
in breeding nurseries is expected to also significantly enhance the
analysis of such experimental data. In contrast to non-invasive soil
mapping, which is performed before or during experimentation, pre-
viously uniformly managed field experimentation sites with historical
data sets represent a good choice to unravel the inherent soil hetero-
geneity indirectly by proximal or aerial reflectance sensing of soil and
plant properties. This latter approach is particularly suitable for either
previously or subsequently uniformly managed fields and allows to
derive important soil characteristics such as the varying plant available
water capacity via plant reflectance characteristics at relevant time
windows (Schmidhalter et al., 2008) or relevant top soil characteristics
(Selige et al., 2006). Since in most cases where not dedicated changes in
the soil nutrient status, other than nitrogen, or e.g. the pathogenic soil/
plant status, have been established, the availability of water or nitrogen
represents by far the most dominant properties determining differences

in local plant yields (Geesing et al., 2014) and should therefore pre-
ferably be determined prior or following experimentation. In all cases
possible interactions with the yearly climatic situation should be con-
sidered. Potentially limiting factors should be included in the choice of
the most appropriate method.

In summary the inclusion of plot-wise, time invariant soil and relief
parameters allows significantly improving the discrimination of the
treatment performance in field trials. Therefore, we recommend to
systematically collecting this information from all experimental sites
prior or following the experimentation. The static character of this in-
formation depicts the local heterogeneity and remains as long-term
information not requiring any further data collection. Regarding the
choice of the different sensors it is difficult to arrive at a clear re-
commendation. The weaker influence of temperature on the readings
represents an advantage of the MK2. On the other hand the regression
analyses between ECa and texture indicates mostly higher R2-values
using the EM38 (Heil and Schmidhalter, 2015).

Deriving experimental field heterogeneities by means of remote or
proximal sensing (satellite, drone, terrestrial sensing) represents also a
viable alternative.

5. Conclusions

It is clear that not all differences in soils that account for yield
differences can be assayed by proximal soil sensing as used in this study
or, alternatively, by proximal or spectral remote sensing as outlined
above. However, these approaches provide new and more compre-
hensive analyses for dedicated agronomic plot testing or breeding
nurseries. Overall, significant advantages are expected beyond those of
the established enhanced analysis based on optimized field layout ex-
perimental protocols with adapted statistical analyses. However, these
approaches are not meant to replace well-established analytical proto-
cols in field experimentation but to augment them with a plot-wise,
non-invasive investigation of the inherent soil variability; thus, a highly
likely outcome of this type of investigation is a more comprehensive
analysis. Based on the required intensive further testing and validation,
this might represent a new standard in field experimentation that also
permits interpretation of subtle or minor differences in plant growth or
yield.

Subsequent work, which is beyond the scope of this publication, will
have to address the influence of specific forms of fertilizer on under-
lying structures, such as different growth patterns. Furthermore,
weather conditions must be considered for further improvements in the
models. Finally, the year-to-year climatic variation can be sufficiently
high so that even the best predictors cannot adequately simulate the
yield.

Table 9 (continued)

Data from fertilized plots; Independent variables: effects fertilization level, fertilizer-no., and covariates (ECa, topographic parameters, location information (Gauß-Krüger
coordinates)); N = 84

Target Year Model and effects F Sig. Partial eta- Adj. R2 RMSD

Yield
[dt ha −1] (1/x)

2010 Adjusted model 6.647 0.000 0.714 0.606 1.83
Constant 4705.381 0.000 0.992
Fertilization level 18.141 0.000 0.312
Fertilizer no. 0.980 0.451 0.128
Fertilization level*Fertilizer no. 2.141 0.070 0.243
ECa (MK2-h-0.5)^3 36.50 0.000 0.477
ECa (MK2-v-1.0)^3 14.066 0.001 0.260

Yield
[dt ha −1]

2012 Adjusted model 10.792 0.000 0.802 0.728 2.04
Constant 3419.743 0.000 0.988
Fertilization level 126.664 0.000 0.760
Fertilizer no. 2.769 0.024 0.293
Fertilization level*Fertilizer no. 0.833 0.552 0.111
ECa (MK2-h-0.5)^3 13.30 0.001 0.250
LS-factor^3 8.714 0.005 0.479
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