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Abstract: Fast and accurate assessment of within-field variation is essential for detecting field-wide 

heterogeneity and contributing to improvements in the management of agricultural lands. The goal 

of this paper is to provide an overview of field scale characterization by electromagnetic induction, 

firstly with a focus on the applications of EM38 to salinity, soil texture, water content and soil water 

turnover, soil types and boundaries, nutrients and N-turnover and soil sampling designs. 

Furthermore, results concerning special applications in agriculture, horticulture and archaeology 

are included. In addition to these investigations, this survey also presents a wide range of practical 

methods for use. Secondly, the effectiveness of conductivity readings for a specific target in a specific 

locality is determined by the intensity at which soil factors influence these values in relationship to 

the desired information. The interpretation and utility of apparent electrical conductivity (ECa) 

readings are highly location- and soil-specific, so soil properties influencing the measurement of 

ECa must be clearly understood. From the various calibration results, it appears that regression 

constants for the relationships between ECa, electrical conductivity of aqueous soil extracts (ECe), 

texture, yield, etc., are not necessarily transferable from one region to another. The modelling of 

ECa, soil properties, climate and yield are important for identifying the location to which specific 

utilizations of ECa technology (e.g., ECa−texture relationships) can be appropriately applied. In 

general, the determination of absolute levels of ECa is frequently not possible, but it appears to be 

quite a robust method to detect relative differences, both spatially and temporally. Often, the use of 

ECa is restricted to its application as a covariate or the use of the readings in a relative sense rather 

than as absolute terms.  

Keywords: EM38; apparent electrical conductivity; soil mapping; yield variability and management 

zones; soil sampling schemes; soil types 

 

1. Introduction 

Fast and accurate detection of within-field variation is essential for the detection and 

management of the environment. The EM38 device (Geonics. Ltd., Mississauga, ON, Canada), a 

sensor that delivers dense datasets, can be used to accomplish this goal. The EM38 meter is the most 

widely used EMI sensor in agriculture [1,2]. 

Researchers have related EM38-ECa (apparent electrical conductivity—ECa) to a number of 

different soil properties either within an individual field or across the entire landscape [3]. The 

application of EM38 began with the detection of salinity and continued with the determination of 

clay and water content [2]. Currently, areas of application include the estimation of nutrient levels 

and other soil chemical and physical properties, soil sampling points, the determination of soil types 

and their boundaries, the prediction of yield and the delineation of crop management zones. The 
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increasing application especially during the last decade is also caused by various technical 

developments: Global Positioning Systems (GPS), surface mapping programs and systems for data 

analysis and interpretation. Technical data, construction and tool specification are described in Heil 

and Schmidhalter [4]. 

This device consists of a receiver and a transmitter coil installed 1.0 m apart at the opposite ends 

of a nonconductive bar. The investigated depth range depends on the coil configuration and the 

distance between the coils. While the distance is fixed, the orientation of the coils can be changed. In 

the vertical mode, the device is in a position perpendicular to the soil, whereas in the second case, the 

device lies parallel to the soil surface [5,6]. The sensitivity in the horizontal mode is the highest 

directly below the instrument, while the sensitivity in the vertical position reaches a maximum at 

approximately 30–40 cm below the instrument. The depth-weighted nonlinearity of the response is 

shown in Figure 1. The cumulative relative contributions of all soil EC are R(z).  

  

Figure 1. (Left) Relative cumulative contribution vs depth for vertically (RV(z)) and horizontally 

(RH(z)) orientated dipoles; (Right) Comparison of the relative responses for vertically (FV(z)) and 

horizontally (FH(z)) oriented dipoles. 

An exact determination of the measurement depth is difficult. Theoretically, the readings acquire 

an unlimited depth, but in reality, it depends on the electrical contrast. The most common definition 

is a depth range up to 1.5 m when using the vertical dipole mode and 0.75 m in the case of the 

horizontal mode [4–6].  

For wide area measurements e.g., in precision agriculture as well as in field-scale soil property 

measurements the sensor is mounted on metal-free sledge and pulled behind an all-terrain vehicle 

equipped with a GPS receiver and data collection computer (Figure 2). 

 

Figure 2. Mounting of the EM38 on a metal-free sledge pulled by a tractor (constructed after Corwin 

and Lesch [7]). 

Beside the EM38, EM31 and EM34 electromagnetic devices are also available on the market. In 

contrast to the EM38, the other devices are designed for the detection of deeper areas of soils, e.g., 

geological layers, ground water and other subsurface feature associated with changes in ground 
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conductivity. The EM31 has an effective exploration depth of about six metres with an intercoil 

spacing of 3.66 m. The EM34-3 uses three intercoil spacings—10, 20 and 40 m—to provide variable 

depths of exploration down to 60 metres.  

2. Goal of this Study 

The objective of this study is to summarize the results of recent measurements and the 

development of algorithms from ECa measurements obtained with the geophysical sensor EM38. 

Given the numerous possible subject matters for research in using EM38, this review paper has 

focused on the following specific fields:  

1. Salinity  

2. Soil-related properties in non-saline soils 

 Soil texture 

 Soil water content, water balance 

 Soil horizons and vertical discontinuities 

 N-turnover, cation exchange capacity, organic matter and additional soil parameters 

 Soil sampling designs 

 Soil type boundaries 

3. Agriculture  

 Agricultural yield variability and management zones 

 Efficiency of agricultural field experimentation 

 Additional application of EM38 in agriculture and horticulture 

4. Archaeology 

The rationale of this compilation should allow the users of this sensor to understand which 

variables are today detectable, which objectives are realistic and in which regions applications are 

widely used. The users have to note that these sensor readings are a composite of soil properties and 

therefore not a replacement for in-depth knowledge’s about soil and site.  

3. Surveying Soil Salinity 

Ample information can be found in the literature that describes the potential of EM-38 

measurements for the non-invasive detection of in situ soil salinity (Table 1).  

Table 1. Overview with literature of relationships between EM38-ECa and salinity. 

Study Parameters Location of Investigation 

Derivation of salinity with ECa and ECe 

[8] ECa and ECe relationships: classifying salt affected area California, USA 

[9] 
Descriptions and formulations of ECe and ECa; 

mathematical coefficients; 
South Australia 

[10,11] 
Descriptions and formulations of ECe and ECa; inverted 

salinity profiles; 
South California, USA  

[12] 
ECa and ECsaturated extract, Na, Cl, Salinity maps with relation 

to yield Barley) 
North-east Australia  

[13] Calibration ECe and ECav, ECah Missouri, USA  

[14] 
ECa and EC1:5 relationships to perform growth of 

Australian tree species on saline sites 
Queensland, Australia  

[15] Formulations of ECe and ECa Egypt 

[16] 
Relationship ECa and ECe, ECa observations on 

establishing and growth of perennial pasture species 
Australia 

[17] Salinity contour maps with ECe and ECav, ECah Nnortheast Spain 

[18] 
Salinity classification system based on EC1:5 with groups 

of degrades 
Henan, China 

[19] Formulations of ECe and ECa California, USA 
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Table 1. Cont. 

[20] 
ECa, ECe to apply site specific management tech. on saline 

sites 
California, USA  

[21] 
ECe and ECav, ECah advanced calibrations reduce soil 

sampling from 200-300 to 36, 
California, USA  

[5,22] Site calibration ECe and ECav, ECah Saskatchewan, Canada  

[23–26] 

Formulations of ECa and ECe; Salt tolerance of trees, 

forages, crops and turf grasses; survival and growth of 

eucalyptus and pastures in saline soils. 

Alberta, Canada 

[27] 
Exchangeable sodium percentage and ECe in relation to 

ECa 
Illinois, USA  

[28] 
Soil survey with salinity regions; relationship ECe and 

ECa to detect salinity of irrigated districts 
Aragon, Spain  

[29] Ranges of ECa as classification system of saline areas Victoria, Australia  

[30] 

Salinity classification system based on ranges of total 

dissolved salt concentrations, EC1:5 with groups of crops 

with different tolerances to rootzone salinity 

Victoria, Australia  

[31–34] 
Descriptions and formulations of ECa, ECe, ECp and EC 

ratios; multiple regression coefficients; 
California, USA  

[35] 

Relationships of ECe and ECa, Soil salinity maps of 

different depth intervals and salinity profile maps at 

upstream and downstream of the field borders 

Yazd Province, Iran  

[36] 
Monitoring spill of liquid manure occurred a few years 

ago 
Manitoba, Canada  

[37] Formulations of ECe and ECa (India) India (different regions) 

[38,39] 
Descriptions and formulations of ECe and ECa; modeled 

coefficients; 
NSW, Australia  

[40] 
Comparison EC1:5 - ECe and ECa to detect salinity in an 

early stage 

Nakhon Ratchasima, 

Thailand 

[41] Comparison ECe and ECa to detect salinity New Mexico, USA  

[42–45] 

Determination ECe profiles with ECa (EM38 and EM31); 

geostatistical methods to predict salinity from ECa (EM38 

and EM31), comparison calibration approaches; 

NSW, Queensland, 

Australia 

[46,47] 

Ratio (EM38/EM31) sampling points to determine deep 

drainage and leaching fraction, ECa and ECe; ECa and 

clay; ECa and deep drainage; 

NSW, Australia  

[48] ECe, water content and ECah, combined with cokriging California, USA  

[49] 
Descriptions, formulations, classifications of ECa, ECe, 

ECp and EC ratios 
– 

[50] Overview salinity and determination – 

[51–53]  Detection subsurface saline material Victoria, Australia  

[54] 
Calibration models ECe and ECa and water content over 

regional scale 
Colorado, USA  

[55] 
Descriptions and formulations of ECe and ECa, simple 

depth weighted coefficients; 
North Dakota, USA  

[56] 
Depthwise calibration models ECav, ECah and ECe and 

EC1:5 to construct inverted salinity profiles 
Jiangsu, China  

[57] Comparison saturated paste and 1:1 soil to water extracts Oklahoma, Texas, USA  

[58] Formulations of ECe and ECa Pakistan 

[59] Site calibration ECe and ECav, ECah Navarre, Spain  

[60] Site calibration ECe and ECav, ECah North Dakota, USA  

[61] Site calibration EC(1:5) and ECah West Australia  

[62] Salinity calibration model to simulate ECe from ECa 
California, Minnesota, 

USA  

[57] Comparison saturated paste and 1:1 soil to water extracts Oklahoma, Texas, USA  
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Table 1. Cont. 

Construction of salinity maps 

[63] 
Interpolation methods of ECa; 

ECa maps as base for salinity maps/ECe) 
Uzbekistan 

[64] Relation ECa-topography-salinity extension Senegal 

[65] ECa-salinity areas SE Australia  

[66] Salinity maps with stepwise data processing Victoria, Australia  

[67] Mapping salinity with EM38, EM31 and Wenner array Alberta, Canada  

[68] Geostatistical analysis of soil salinity data ––––––– 

[69] 
Salinity distribution within a field and combination with 

iodine tracer study 

Cape Province, South 

Africa 

[70] 
Soil salinity maps with ECa, in relation to land use and 

soil/geology 
South Australia  

[71] ECa and visual agronomic survey of salinity Punjab, Pakistan  

[72] Mapping of salinity plume in a sandy aquifer North Dakota, USA  

[73] 
Detecting salt stores and evaluation of the risk of 

salinisation 
NSW, Australia  

[74] 
ECa maps by inverting data collected at various heights in 

the EM4SOIL software 
Yazd Province, Iran  

[75] Salinity characteristics with PCA California, USA  

[76] Comparison of multiple linear regression and cokriging California, USA  

[77] Temporal changes in salinity using ECa Aragon, Spain  

[78–80] 

Saline seep mapping and remediation; comparison 

salinity (ECe) and ECa of different conductivity tools; 

saline seep mechanism in combination with hydrological 

modeling 

Kansas, USA  

[81] Comparison salinity (ECa) between different land use Australia 

[82] EM38 field wise NSW, Australia  

Salinity and field management 

[83] Assessment of salinity by farmers Australia 

[84] Effect of salinity on eucalyptus trees SE Australia  

[85] Soil salinity and groundwater properties Tunisia 

[86] Extension of groundwater acidity NSW, Australia  

[87] EM38 and TDR: comparison of measuring methods - 

[88] Assessment of soil quality properties with ECa California, USA  

[89] 
ECa distribution in the landscape and as a consequence of 

evapotranspiration and phreatic rise 
South Australia  

[90] Salinity in vineyards Australia 

[91] ECa–salinity–water content California, USA  

[92] Salinity management in cotton fields California, USA  

EM38 in combination with other sensors 

[93] Comparison tools and methods detection salinity Australia 

[94] 
EM38 in combination with satellite-based navigation 

methods 
Alberta, Canada  

[95] 
Increasing precision of salinity with EM38 and EM31 

(both ECah) at various layers 
Yellow River Delta, China  

[96] 

Hyperspectral data related to different soil salinization 

extent was combined with ECa order to establish a soil 

salinization monitoring model 

Weigan River, China  

Corwin and Lesch [97] summarized five methods that have been used for determining soil 

salinity in the field: (1) visual crop observations; (2) the electrical conductivity of the soil solution (soil 

paste or extracts); (3) in situ measurement of electrical conductivity with electrical resistivity (with 

the Wenner array method); (4) non-invasive measurement of electrical conductivity with ECa and, 

most recently; (5) in situ measurement of electrical conductivity with time domain reflectometry. 

Frequently, ECe (e.g., conductivity of aqueous extracts of soil saturated soil paste, EC1:5, EC1:2 or EC1:1, 



Sensors 2017, 17, 2540  6 of 44 

 

conductivity of soil: water suspensions) was indicated as the most useful and reliable measurement 

of point-wise salinity detection [43–57,81,82,95–98]. In older publications, ECe alone was often used 

to identify salt-affected areas [29–57,81,82,86,93,95–99] Norman [30] developed a salinity 

classification system based on the range of total dissolved salt concentration (EC1:5) with 

corresponding groupings of crops with different tolerances to root zone salinity. Soil salinity can be 

derived from the conductivity of the bulk soil (ECa). For example, salinity is quantified and monitored 

in irrigated agricultural areas of arid zones by means of ECa measurements using EM38 [28–40,86]. 

In areas where saline soils exist, 65% to 70% of the variance in ECa can be explained by the changes 

in salinity alone [51]. ECa readings can be used to predict the exchangeable sodium percentage and 

ECe as well [27]. The different terms of salinity can be inferred from the equation ECa = f(ECe(0−Z cm)).  

During the last three decades, several calibration methods have been published  

describing EM38-ECe relationships [27,28,41,60]. Following the classification of Triantafilis et al. [43] 

and Vlotman et al. [49], further calibration approaches have been proposed, using linear  

regression, multiple regression coefficients [15,31,37], simple depth weighted coefficients  

[5,13–55,67,69–82,86–94], established-coefficients [10,11], modelled coefficients [38], mathematical 

coefficients [9], a logistic profile model [43] and inverted salinity profiles [56].  

Johnston et al. [19] reported that EM38 readings are not highly accurate but that categories of 

soil salinity for large areas can be readily established. Coefficients of determination between 0.88 and 

0.9 at depth levels of 30–60, 60–90 and 0–90 cm in soils in which salinity was the dominant factor 

influencing the EM38 readings were described by Amezketa [59]. A more complex example of these 

regressions is the dual pathway parallel conductivity (DPPC) model developed by Rhoades et al. [32]. 

This model indicates the major contribution to ECa readings from conductivity in the water-filled 

pores that contain the majority of the solved salts with a relatively small contribution from the 

exchangeable cations. When comparing different ECa-ECe prediction models, the relationships often 

show low accuracy [5,19,78]. These results suggest that it is essential to establish calibration 

relationships between ECa and ECe that depend on the soil type and water status for the specific site 

conditions for a particular survey [19,20]. The variability of ECa to ECe conversion is greater in  

coarse-textured soils than in medium- or fine-textured soils [24].  

The effect of soil salinity and soil water content on the ECa has been described e.g., by Hanson 

and Kaita [91], Bennett et al. [65], Gill and Yee [16], Turnham [81] and Wittler et al. [54]. The results 

indicated substantial changes in the ECa readings as soil-water content changed. A linear relationship 

existed between soil-water content and ECa for each level of soil salinity across the range of measured 

soil water contents [91]. Norman [30] stated that, for clay soils (i.e., >40% in the top 30 cm), the water 

content of the soil profile should be greater than 20% to allow soil salinity values to be accurately 

derived from the observed ECa data. In Iranian investigations, Rahimian and Hasheminejhad [35] 

found that more reliable regression equations between ECah (horizontal mode) and ECav (vertical 

mode) and soil salinity could be derived at 35% water content in comparison to 25% water content. 

Arndt et al. [60] cited similar values from the USDA-Soil Conservation Service. For field surveys 

where ECa was closely related to salinity, Corwin and Lesch [97] used relationships between the  

v- and h-mode to derive new variables. The geometric mean (sqrt(ECah*ECav)) provides a measure of 

the cumulative ECa through the root zone and the ratio mean (ECah/ECav ) characterizes the degree of 

leaching. A ratio greater than 1 indicates that the net flow of water and salts is upward, and a ratio 

less than 1 indicates a downward net flow. 

Broadfoot et al. [66] and Mankin and Karthikeyan [80] described similar classifications: 

 Leached soils, where salinity increases with depth, defined by ECah/ECav ≤ 1.0 

 Uniform, where salinity does not change significantly with profile depth and where  

1.0 < ECah/ECav ≤ 1.05, and  

 Inverted salinity profiles, where salinity decreases with depth and where ECah/ECav > 1.05.  

A similar representation was chosen by Spies and Woodgate [93]. Subsoil (EM31) salinity maps 

and root zone (EM38) maps were combined to provide an assessment of salinity hazard. The EM38 

instrument had a depth range of less than 1.5 m, while the EM31 probes had a depth range of  

4 to 6 m. Triantafilis et al. [42] developed a leaching fraction model in combination with ECa based 
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on the amount of deep drainage and the average root zone ECe. However, the present investigations 

are not limited to the creation of real-time inventories but are also of value in forecasting temporal 

changes in the salinity status. Lesch et al. [100] used pre- and post-ECa surveys to quantify the degree 

of salt removal from a field. However, the spatial variability impeded the derivations, particularly 

for subareas with high salinity levels. Salama et al. [101] related apparent conductivity to 

recharge/discharge mechanisms within watersheds. They associated low values of ECa with low 

concentrations of total soluble salts and recharge areas. Discharge areas were associated with high 

values of ECa, indicating greater concentrations of soluble salts near the surface and inverted salt 

profiles. The latter were associated with rising groundwater tables, increased groundwater flow with 

mobilization of soluble salts, and greater discharge at or near the surface. All of these factors are 

related to saline seep development [102]. 

In an advanced application, EM38-ECa was used to help to assess the salt tolerance of trees, 

forages and turf grasses [14,16,23–26,65]. The authors also studied the usefulness of ECa to predict the 

survival and growth of eucalyptus and pastures in saline soils. According to McKenzie et al. [24,25] 

and McKenzie [26], close correlations between salinity measured as ECa to the yield of wheat and 

salinity measured by the saturated paste extract by McKenzie [26] were equal. In contrast, 

relationships of ECa with observations on the establishment and growth of perennial pasture species 

were weak [16]. Kaffka et al. [20] reported that, in locations where crop growth were influenced by 

salinity, ECa was useful for estimating optimum N-fertilizer application and for identifying areas of 

the field with unprofitable yields. Horney et al. [92] developed a four-step method for site-specific 

salinity management in commercial fields. The steps included (1) generation of an ECa map;  

(2) directed soil sampling for ECe; (3) determination of the estimated amendment requirement as a 

function of location in the field; and (4) integration of the individual amendment requirements into a 

practical spatial pattern for amendment application. As early as 1997, McKenzie et al. noticed that 

EM38 is a cost-effective tool for assessing field salinity and for use in experiments on the salt tolerance 

of crops.  

Vaughan et al. [48] combined ECe and water content of soil samples with field wide ECah 

measurements. The prediction of soil salinity at unsampled points was carried out by co-kriging of 

logECe with ECah. In a comparison to the work of Triantafilis et al. [44] co-kriging and  

regression kriging of the ECa readings also showed minimum errors compared to ordinary and  

three-dimensional kriging.  

All of the cited procedures are practical only if salinity is the main factor influencing ECa and if 

ECe shows a close relationship to ECa [65]. Otherwise, a multiple regression model with further 

independent influencing factors is required. Consequently, calibration equations and modelled 

results cannot be used on other sites very often. 

4. Detecting Soil-Related Properties in Non-Saline Soils by EM-38 

4.1. Influence of Soil Water Content Conditions  

In soils where salinity is not a significant factor, ECa values primarily represent as a function of 

soil water content and the amount of electrical charge. Many researchers recommend measurements 

with the EM38 at a soil water content close to or at field capacity [49,103,104]. 

This praxis has its basis in the theory of Rhoades et al. [32] and Corwin and Lesch [97]. In 

sufficiently wet soils, soil water is the major conductive pathway. Here ECa is determined by the 

volumetric content of soil water. However, to an increasing extent of researchers noticed that the 

spatial patterns of ECa, measured under different soil water conditions, are relatively stable with time; 

only the level indicates a change [105]. However, the relationship between ECa and soil physical and 

chemical properties varied considerably depending on the actual water conditions. This weak 

temporal stability of relationships between ECa and other soil properties indicated that soil water 

conditions have a significant influence on ECa. When there is not enough water in the continuous 

pores, the surfaces of soil particles and the small discontinuous pores of the soil are the main 

pathways (e.g., when soil water content is <60 to 70% of field capacity). Under these conditions, the 
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influence of the soil particle volume, the volume and conductivity of water in the small pores, as well 

as the surface- conductivity of soil particles, increases [32].  

Bang [106] showed that several variables (i.e., bulk density, percentage of sand, silt, and clay, 

plant-available water content, cone index, and saturated hydraulic conductivity) and chemical 

parameters (i.e., extractable P and K, pH, cation exchange capacity, organic matter, and 

micronutrients) presented different strengths of the correlations with ECa. Few direct strong 

correlations were found between ECa and the soil physical properties studied (R2 < 0.50), yet overall, 

the correlation improved when ECa was measured under relatively dry conditions. Furthermore, 

according to Bang, the utility of ECa as a variable in cluster analysis to indicate management or soil 

sampling zones was influenced by variations in ECa measured under different soil water conditions. 

Bang suggested “that the spatial and temporal ECa variability measured under different soil water 

conditions could be a critical factor when evaluating the ability of ECa to predict soil chemical and 

physical characteristics important to soil and crop productivity and management”. Therefore, Bang 

[106] recommended that an ECa survey be conducted under relatively dry conditions in similar 

coastal plain soils. 

Lück et al. [107] carried out measurements on loamy fields, partly with coarse textured 

sediments. The authors found the most pronounced ECa distributions during summer (relatively dry 

conditions). This may has been caused by the larger water content fluctuations in the sandy soils due 

to their lower water-holding capacity. In contrast to these soils, the loamy parts of the fields had a 

higher water content as a consequence of higher water-holding capacity as well as better water 

delivery via capillary rise. Conversely, at sites with dominant Pleistocene loess soils, readings taken 

during periods when soil water content was at field capacity produced more pronounced maps [108]. 

Under drier conditions, the ECa readings indicated lower, more similar values. Some researchers 

recommend a different procedure. Mertens et al. [109] suggested the creation of an averaged map 

from repeated recordings made at different dates. This procedure is scientifically more appropriate 

than a water correction. Zhu et al. [110] indicated that the best mapping of major soil distribution 

across a landscape studied in Pennsylvania required optimal timing, meaning the occurrence of a wet 

period. No single survey or relative differences in ECa obtained by repeated measurements was 

sufficient to obtain the best possible soil map for the study area. A combination of repeated surveys, 

depth to bedrock, and terrain attributes provided the best mapping of soils in this agricultural 

landscape and doubled the accuracy of the map. ECa measurements collected during the wetter 

periods (i.e., >10-mm antecedent precipitation during the previous 7 days) showed greater spatial 

variability (i.e., greater sills and shorter spatial correlation lengths), indicating the influence of soil 

water distribution on soil ECa [111]. 

4.2. Soil Texture 

Frequently, in non-saline soils, ECa is used to indicate soil texture, particularly clay content. 

Simulations of silt and sand are rare and seem more likely a by-product. However, the quality of the 

single relationships are often rather confounding (Table 2). As noted by Corwin and Lesch [112] the 

target variables correlate inconsistently with ECa mainly as a consequence of: (1) the complex 

interaction of soil properties; (2) a temporal component of variability that is only weakly indicated 

by an expected constant variable such as ECa and (3) variable climatic factors. 

McBratney et al. [113] and McBratney and Minasny [114] demonstrated that differences in the 

mineral composition influence the magnitude of the ECa values and therefore the strength of the 

relationship to the clay content. Kaolin-dominant soil minerals will have smaller conductivities, and 

soil that mainly contains illite or has a mixed mineralogy will have larger ECa values, but these values 

are smaller than those for smectitic materials. Furthermore, the authors noticed that at low 

conductivities (<50 mS m−1), it is quite difficult to separate clay. Wayne et al. [115] derived texture 

fineness classes from ECa readings. A conductivity greater than 30 mS m−1 indicated clay, and a 

conductivity less than 5 mS m−1 indicated sand. Furthermore, ECa values between 0 and 10 were 

classified as sandy loam, and values between 10–20 mS m−1 indicated clay loam. These fineness classes 

represented a basis for the derivation of the plant-available water content. Domsch and Giebel [116] 



Sensors 2017, 17, 2540  9 of 44 

 

described another approach to delineate clay content. Working with predominantly sandy soils, the 

authors indicated that, at field capacity, ECa reflected this property well. However, for soils with 

water-influenced horizons (gleyic soils), such relationships are very weak and should not be 

introduced in calculations for mineral soils. A factor scoring that used clay and silt content showed a 

closer relationship with ECa. Furthermore, the authors related ECa to soil textural classes: an ECa of 

0–10 mS m−1 indicated sand or loamy sand, an ECa of 10–20 mS m−1 indicated sand or loamy sand 

over loam, and an ECa of 20–30 mS m−1 indicated sandy loam or loam. Vitharana et al. [104] used the 

geometric mean ((ECav·ECah)0.5) to delineate the clay content of the top- and subsoils.  

Doolittle et al. [117] used ECa to locate small inclusions of sandy soils within a predominately  

fine-textured alluvial landscape. Bobert et al. [103] improved the relationships between ECa and clay, 

silt and clay + silt by extracting the drift caused by soil water content calculated from a wetness index 

map. A multi-site/multi-season approach to calibrate ECa models for predicting clay content across 

large landscapes was developed by Harvey and Morgan [118]. The fact that the relationships between 

clay and ECa were similar in all 12 fields, indicated that a single linear regression model could be 

used to describe the spatial variability of the clay content across all of the fields. This “single 

calibration approach” used data from a designated calibration area to estimate ECa model parameters 

that were then combined with data from subsequent fields to predict the soil variability in the 

observed fields. The single calibration approach is likely applicable to other areas, providing 

requirements for its use are met. Those requirements include the following: (1) the distribution of the 

soil property or properties of interest in calibration area should be representative of the study area; 

(2) the soil property or properties that influence ECa should be the same across the study area; and 

(3) management practices (e.g., crop rotation and irrigation) should be similar across the study area. 

To an increasing extent, methods other than linear regression have been used. Response surface 

sampling design, fuzzy k-means classification, hierarchical spatial regression modelling and ECa 

(EM38 and EM34) surveys were applied by Triantafilis and Lesch [119] to produce a map of spatial 

clay content. Triantafilis et al. [44] combined ECa values (EM38 and EM31) and clay content with 

different geostatistical methods (co-kriging, regression-kriging and ordinary-kriging). The results 

suggested that the linear relationship of clay content against ECa (EM38) data used in combination 

with kriging of regression residuals was the most accurate. Vitharana et al. [104] showed that 

standardized ordinary kriging of subsoil clay content as the primary variable and the geometric mean 

((ECav*ECah)0.5) as the secondary variable gave better results when compared to ordinary kriging and 

traditional ordinary kriging.  

Table 2. References indicating relationships between EM38-ECa and soil texture. 

Study Texture 
Texture 

Content (%) 
ECa (mS m−1) R2 

Location of 

Investigations 

Europe 

[103] 

Clay 

Silt 

Silt + Clay 

not described ECav: 10–110 

0.28/0.53 * 

0.14/0.49 * 

0.25/0.71 * 

* with extracting  

TWI-trend 

Wulfen, Kassow, 

East Germany  

[116] Clay Silt 
4–16 

7–36 
ECav: 3–30 

ECav: 0.55 (clay) 

ECav: 0.67 (clay + silt) 

(after factor scoring) 

Brandenburg, 

Berlin, Germany  

[120] Clay 2–60 ECav: mean 13–92 ECav: 0.56 
Saxony-Anhalt, 

Germany 

[121] Clay 2–45 ECav: 2–80 

ECa: 0.66 

ECa corr: 0.85, corrected 

across field boundaries 

with neighbors 

regression 

Bavaria, Germany  

[122] Clay 6–42 ECav, ECah: 6–36 
ECav: 0.08–0.38 

ECah: 0.13–0.33 

Scheyern, 

Germany 
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[123] 

Clay 7––32 
ECav: 8–44 

ECah: 6-41 

ECav: 0.21–0.44 

ECah: 0.13–0.67 

Scheyern, 

Germany  

Silt 4–53 
ECav: 8-44 

ECah: 6–41 

ECav: 0.11–0.46 

ECah: 0.01–0.60 
 

Sand 28–79 
ECav: 8–44 

ECah: 6–41 

ECav: 0.04–0.38 

ECah: 0.13-0.69 

[109] 

Clay 

Silt 

Sand 

2–25 

5–69 

5–50 

ECav: 5–65 

ECav: 0.76–0.76 

ECav: 0.65–0.71 

ECav: 0.00–0.69 

3 fields around 

Bonn, Germany  

[108] 

Clay 3–48 
ECav: 2–99 

ECah: 5–77 

ECav: 0.76 

ECah: 0.74 

South Germany Silt 4–71 
ECav: 2–99 

ECah: 5–77 

ECav: 0.67 

ECah: 0.67 

Sand + 

gravel 
15–67 

ECav: 2–99 

ECah: 5–77 

ECav: 0.76 

ECah: 0.74 

[124] Clay 5–30 ECav: 9 (mean) ECav: 0.94 
Southwest 

Sweden  

[125] 

Clay 9–24 ECav: 4 

ECah: 32.2 

approximate 

values 

two depths: 

0–25 cm, 25–60 cm 

and 2 fields 

ECav: 0.19–0.41 

ECah: 0.32–0.45 

South Norway  

Silt 28–49 
ECav: 0.006–0.52 

ECah: 0.002–0.56 

Sand 33–61 
ECav: 0.01–0.4 

ECah: 0.02–0.44 

Gravel 3–11 
ECav: 0.05–0.94 

ECah: 0.08–0.94 

[126] Clay about 5–40 ECah: 6–26 ECah: 0.63 South Norway  

[127] 
Clay 

Sand 

23–44 

39–67 
ECav: 0–50 

ECav: 0.55 

ECav: 0.41 

Moravia, Czech 

Republic  

[128] Clay 4–24  

ECav: 0.49–0.67 

(different dates on the 

same field) 

Jütland, Denmark  

[129] Clay 2–56 
ECav: 9–106 

ECah: 5–97 
ECav: 0.81 

East-Flanders, 

Belgium  

[104] Clay 
topsoil: 14–24 

subsoil: 3–27 

ECav: 18–47 

ECav: 12–36 

(ECav* ECah)0.5: 0.69 

subsoil 

(ECav* ECah)0.5: 0.16 

topsoil 

Flanders, Belgium  

North America 

[106] 

Clay 
10–46 (mean 

values) 

ECav: 1–54 

ECah: 1–56 

ECav–30 cm: about 0.5 

ECah–30 cm: 0.3–0.56 

North Carolina, 

USA  
Silt 

20–35 (mean 

values) 

ECav: 1–54 

ECah: 1–56 

ECav–30 cm: 0.4–0.6 

ECah–30 cm: −0.3–0.56 

Sand 
40–70 (mean 

values) 

ECav: 1–54 

ECah: 1–56 

ECav–30 cm: about 0.4 

ECah–30 cm: −0.3–−0.6 

[130] 

Clay 

Silt 

Sand 

24–44 

26–51 

8–50 

ECav , ECah: about 

40, salinity 

affected 

0.08 

0.18 

0.14 

ln of 

geometric 

mean of 

ECav and 

ECah 

California, USA  

[112] Clay 3–48 
about ECav, ECah 

10-65 

ECav: 0.11. 

ECah: 0.08 

Western 

California, USA  

[131] Clay 14–29 
ECav: 19–35 

ECah: 14–26 

ECav: 0.69 

ECah: 0.66 
Nebraska, USA  

[118] Clay 12–32 ECav: 19–118 0.76 
12 sites in Texas, 

USA  
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[132] 

Clay 13–63 
ECav: 30–65 

ECah: 38–83 

ECav–30 cm: 0.55 

ECah–30 cm: 0.55 

Central Missouri, 

USA 
Silt 33–81 

ECav: 30–65 

ECah: 38–83 

ECav–30 cm: 0.55 

ECah–30 cm: 0.55 

Sand 6–11 
ECav: 30–65 

ECah: 38–83 

ECav–30 cm: 0.27 

ECah–30 cm: 0.27 

[3] 
Clay 

Silt 

13–36 

31–67 
ECav: 7–37 

ECav: 0.55 

ECav: 0.15 and 0.48 (2 

fields) 

North-central 

states, USA  

[133] 

Clay 

Silt 

Sand 

about 5–40 

unknown 

unknown 

ECav:about 5–60 

ECav: 0.36–0.77 

ECav: 0.27–0.71 

ECav: 0.21–0.36 

Midwest USA  

[100] 
Clay 

Sand 

10–32 

52–85 

ECav: 84.8 

ECah: 40.1 

ECah: 0.76 

ECah: 0.74 
Southwest USA  

Australasia 

[42,45

] 
Clay about 30–85 

ECav:80–200 

(salt affected) 
ECav 0.62 and 0.64 NSW, Australia  

[134] Clay about 40–65 ECav:30–210 ECav: 0.72 NSW, Australia  

[119] Clay 15–58 
ECav: 5–159 

ECah: 13–147 

ECav: 0.66 

ECah: 0.67 

combination of EM34 

and EM38 in different 

modes:0.79 

NSW, Australia  

[135] Clay about 20–45 about 10–36 
ECav: 0.72 

ECah: 0.65 

Manavata, New 

Zealand 

Asia      

[136] 

Clay 

Silt 

Sand 

1.5–41.3 

6.5–33.5 

45.8–91.0 

ECav: 1–40 
topsoil: 0.47  

(on average) 
Sri Lanka 

Unknown 

[137] Clay 12–20 
ECav: 7–20 

ECah: 7–15 

ECav: 0.78 

ECah: 0.80 
Not described 

4.3. Soil Water Content, Water Balance 

The derivation of the water storage capacity, particularly the field capacity, and the plant-

available water content based on electrical conductivity measurements has gained increasing 

importance. Table 3 provides an overview of current investigation areas and target variables. 

Table 3. Literature describing relationships between EM38-ECa and parameters of soil water. 

Study Parameters 
Location of 

Investigations 

Water content 

[138] Water content Iowa, USA  

[139] Water content Iowa, USA  

[112] Water content 
South California, 

USA  

[91] Water content California, USA  

[140] Water content, water table depth New Zealand 

[141,142] Water content Ontario, Canada  

[143] Water storage [mm] Minnesota, USA  

[144] Soil drainage classes Illinois, USA  

[145] Soil water content (θv, θw), ±3% South Dakota, USA  

[146] Plant available water content Missouri, USA  
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[147] Water content 
Columbia County, 

USA  

[148,149] Volumetric water content Texas, USA  

[122] 
Water content: ECav: 0.39; ECah: 0.26 

Plant available water content: ECav: 0.31; ECah: 0.29 
Bavaria, Germany  

[123] Water content ECav: 0.04–0.26; ECah: 0.16–0.64 Bavaria, Germany  

[150] Water content Florida, USA  

[3] Water content North-central USA  

[151] Water content with EM38 and ASD spectrometer Quebec, Canada  

[102] Repeated ECa measurements for determining water content Pennsylvania, USA 

[152] 
Detection of available water content from ECa, for using in 

the yield software ADSIM 
WA, Australia  

[153] 
Repeated ECa measurements and relation to water content 

(irrigation) 

Queensland, 

Australia  

[115] 
Available water content and soil water deficit from texture 

finess classes and ECa 

Cambridgeshire, 

UK  

[154] 
ECa in combination with GPR to predict field wide water 

content 
South-east Italy  

[155] Soil water content, soil bulk density South Dakota, USA  

Groundwater, water table depth, water drainage 

[156] Water table depth using geophysical and relief variables 
Darling River, 

Australia  

[9] Groundwater recharge South Australia  

[157] Depth to groundwater table Montana, USA  

[158] Soil drainage classes Iowa, USA  

[159] 

Characterizing of water and solute distributions in the 

vadose zone with readings of EM38 and borehole 

conductivity meter 

New Mexico, USA  

[160] Water table depth Florida, USA  

[161,162] Detection of areas with different water movements Tennessee, USA  

[46] Deep drainage risk Australia 

[163] Hydraulic conductivity of palaeochannel in alluvial plains NSW, Australia  

[42,45] 
Deep drainage (mm/year) with a 4-parameter broken-stick 

model fitted to ECav beyond 120 cm 
Australia 

Irrigation 

[164] Irrigation effectiveness/drainage California, US,  

[165] 
ECa – soil available water holding capacity on two  

variable-rate irrigation scenarios 
New Zealand 

[166] 
ECa for quick assessment of deep drainage under irrigated 

conditions in the field. 
Australia 

Water content, like salinity, is a horizontally and vertically effective dynamic property. In areas 

where water content is the dominant factor that influences ECa and where water content decreases 

with depth, ECah > ECav and vice versa [167]. Wayne et al. [115] developed a hierarchical procedure 

for calculating available water content. ECa was used to target the location for neutron probe samples. 

The construction of a water content–texture relationship allowed the determination of the available 

water content and the soil water deficit. Kachanoski et al. [141] found that in soils with a low 

electrolyte content and a wide range of texture, ECa explained more than 90% of the water content. 

Additionally, Kachanoski et al. [142] correlated ECa readings with water storage and found that  

50–60% of the variations in ECa were explained by water content. Similar levels for coefficients of 

determination were described by Sheets and Hendrickx [150] and Khakural et al. [143].  

Morgan et al. [147] noted that ECa is only applicable in areas with a greater range of water content. 

The same observation was made by Hedley et al. [135],who calculated an R2 of 42%. Substantial 

changes in the relationships between ECa readings and soil water content were shown by Hanson 

and Kaita [91]. The higher the soil salinity was, the more sensitive the ECa readings were to changes 
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in soil water content. A linear relationship existed between soil water content and ECa for each level 

of soil salinity over the range of measured soil water contents. In a Mollic catena, Brevik et al. [139] 

found significant relationships between ECa and soil water content that explained 50% to over 70% 

of the variability. The greatest difference between ECa values in any soils was observed when the 

soils were moist. Regression line slopes tended to be lower in higher landscape positions indicating 

greater ECa changes with a given change in soil water content. A relationship between increasing 

water content and ECa readings from a summit-to-foot slope area of calcareous till parent material 

with a coefficient of determination of 0.86 was described by Clay et al. Wilson et al. [161,162] derived 

areas with different water movements from EM31 and EM38 readings. Drying/draining patterns 

were characterised by a downward shift in ECa with time. Follow-up ECa surveys across high-to-low 

patterns showed a positive correlation between ECa and water content. Regions with increased 

horizontal flow showed high conductivities after rainfall. Areas that had preferential vertical flow 

showed lower EM38 readings after periods of rainfall. For a prototype engineered barrier soil profile 

designed for waste containment, Reedy and Scanlon [148] and Reedy [149] predicted the average 

volumetric water content at any location at any time with a linear regression model (R2 = 0.80) and 

spatially averaged volumetric water contents over the entire area (R2 = 0.99).  

Bang [106] described weak and negative relationships between soil water content and ECa values 

in North Carolina’s Coastal Plains. Little variation in subsoil water content across the study site for 

each survey date combined with a relatively narrow range of variability in soil texture was the main 

reason for this result. Furthermore, the variability in other factors (e.g., soil compaction and texture) 

might have masked the contribution of the water content to ECa variation., The author concluded that 

the spatial variability of soil water content at a 0- to 75-cm depth could not be directly determined by 

a field-scale ECa survey at this site, due to the weak relationships between soil water content and ECa. 

Relationships between plant-available water content and ECa (R2 = 0.78) were derived by Wong and 

Asseng [152] to transform a water storage capacity map of the field into yield maps for three major 

season types (dry, medium and wet) and nitrogen fertilizer management scenarios. Hall et al. [159] 

reported that ECa methods (i.e., EM38 and the use of a borehole conductivity meter) could accurately 

characterize water and solute distributions in the vadose zone. Saey et al. [168] developed an index 

to register the area-wide soil heterogeneity. After calculating the relationship between clay content 

and ECa, this equation was converted so that ECa was the target variable. In the next step, the authors 

calculated a quotient of the measured ECa and the ECa reading derived from the clay content. This 

result was called ECref and was used as measure for soil heterogeneity. 

Variables other than water content are targets of ECa measurements to an increasing extent; for 

example, hydraulic conductivity, water table depth, drainage classes and groundwater recharge. In 

developing a relationship between ECa and estimated deep drainage (mm/year) Triantafilis et al. 

[42,45] developed four-parameter broken-stick models fitted to ECav beyond 120 cm. Vervoort and 

Annen [163] showed that the overall patterns of the hydraulic conductivity of palaeochannel in 

alluvial plains could be inferred from the combination of EM inversion using EM38 and EM34 

measurements. However, the absolute magnitude of hydraulic conductivity could not be easily 

predicted.  

Sherlock and McDonnell [169] used simple linear regression analyses to compare terrain 

electrical conductivity measurements from EM31 and EM38 to a distributed grid of water table depth 

and soil- water content measurements in a highly instrumented 50 by 50 m hill slope in Putnam 

County, New York. Regression analysis indicated that EC measurements from the EM31 meter  

(v-mode) explained over 80% of the variation in the water table depth across the test hill slope. 

Despite problems with sensitivity and zeroing the EM38 could explain over 70% of the 

gravimetrically determined soil water variance.  

The depth of the water table was also detected by Schuman and Zaman [160]. Knowledge of the 

water table depth was necessary to select a suitable field for new citrus plantings and for drainage 

systems. With ECa in the vertical mode, the authors could estimate these values with a RMSE of 

approximately 4–15 cm. ECa, the topographical wetness index and the rainfall time series gave good 

predictions of water content and water table depth using the models derived according to Hedley et 
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al. [140]. Further investigations determined soil drainage classes [144], groundwater recharge [170], 

water drainage [46] and irrigation [164]. 

4.4. Detection of Soil Horizons and Vertical Discontinuities  

To an increasing extent, investigations were carried out to calculate ECa depth profiles in 

combination with the detection of vertical discontinuities (Table 4). Refining and improving of soil 

maps is necessary for soil protection and the description of soil functions.  

Table 4. Literature indicating derivations of soil types and patterns as well as further soil parameters 

from EM38-ECa. 

Study Investigation Object Location of Investigation 

Soil types 

[171] Separation between Natraqualf and Ochraqualf Tennessee, USA  

[172] Soil types, yield maps Virginia, USA  

[173] ECa to derive more homogeneous lacustrine-derived soils Iowa, USA 

[174] Soil pattern as basis of management zones England  

[175] Soil boundaries Denmark 

[158] Soil map unit boundaries, detection of inclusions Iowa, USA  

[2] Refine and improvement of soil maps - 

[176] Soil types with clusteranalysis 
Elbe-Weser-region, 

Germany  

[177] 
Detection of areas with sulfidic sediments and coastal acid 

sulfate soils 
NSW, Australia  

[128] Soil types Jütland, Denmark  

[178] Soil boundaries between clay loam and sandy loam soils Cambridge, UK  

[179] 
Soil types, in combination with terrain parameters and other 

sensors 
NW Victoria, Australia  

[102] Repeated ECa measurements for determining soil types 
Pennsylvania, 

USA 

[180] 
Inversion of EM38 and EM34 sigma-a data to detect the areal 

distribution of soil types 
Darling River, Australia  

[181] 
Distinguishing between soils with cambic pedogenic 

horizons and argillic horizons; boundaries of soil map units 
Texas, USA  

[182] Supporting delineation of spatial distribution of C content Harz region, Germany  

Soil depth to horizons/layers/discontinuities/borders 

[183] Depth to limestone bedrock and clayey residuum 
Florida, Pennsylvania, 

USA  

[184] Depth of claypan soils Missouri, USA  

[185] Soil depth sounding East, south Germany  

[5] Soil depth sounding Ontario, Canada  

[186] Depth to sand and gravel Unknown 

[187] Depth of sand deposition Missouri, USA  

[188] Layer depth, ECa as auxiliary variable North Netherlands  

[189] Depth of the Tertiary substratum Flanders, Belgium  

[190] Soil depth to petrocalcic horizon Utah, USA 

[191] Soil depth to bedrock (loess above basalt) Idaho, USA 

[192] Bulk density and ECa Iowa, USA 

[193] Boulder clay depth North Netherlands 

[194] 
Linear, negative relation between ECa and topsoil layer 

thickness 
Fuxin, China  

[195] 
Bayesian method to map the clay content of the Bt horizon 

associated with the control of encroaching trees 
South Africa 

[1,196–198] Depth to claypan soils Missouri, USA  
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Further soil properties 

[88] Soil properties and cotton yield California, USA  

[199] Soil properties and cotton yield California, USA 

[112] 
Water content, cation exchange capacity, cations and anions 

in saturation extract and exchangeable, B, Mo, pH, C, N, 
West California, USA 

[132] 
Cation exchange capacity, C, N, P, soil enzyme, microbial 

biomass, hydr. Sat. K., bulk density 
Missouri, USA  

[3] Water content, cation exchange capacity North-central states, USA  

[45] CEC in salt affected soils NSW, Australia  

[200] 

CEC in dependence of EM38, EM31, 3 remotely sensed (Red, 

Green and Blue spectral brightness), 2 trend surface (Easting 

and Northing) variables 

NSW, Australia  

[201] Exchangeable Ca, Mg, cation exchange capacity Ontario, Canada  

[124] 
ECa as a covariable in cokriging improved the prediction of 

pH, clay, SOM 
Sweden 

[202] 
ECa in relation to water content, yield, CEC, clay silt, organic 

matter 

Brandenburg, Saxony-

Anhalt, Germany  

[131] C, total dissolved solids, depth of topsoil Nebraska, USA  

[203] Soil organic carbon and classifing with fields normalized ECa Andalucia, Spain  

[204] N-dymanics for management zones Nebraska, USA  

[176] 
Precision agriculture: combination of ECa and soil 

parameters (clay, yield, plant available water) 
Mecklenburg, Germany  

[205,206] Compaction in paddy rice fields by puddling Bangladesh 

[207] ECa as subsidiary variable for interpolation Missouri, USA  

[208] Soil compaction Silsoe, UK 

[209] Relations leaching rates to ECa NSW, Australia  

[210] 
ECa as subsidiary variable for interpolation of P, K, pH, 

organic matter and water content 
Iowa, USA  

[211] 
Simple linear inversion of ECa to simulate magnetic 

susceptibility 
- 

ECa profiling by depth requires more intensive measurements. Usually, this investigation is 

carried out with measurements made at different heights above the soil surface or repeated 

measurements at different coil spacing using regressions between ECa and depth for the further 

calculation [5,9,185,212]. As the instrument is raised above the ground, the relative influence of 

deeper layers on the measurements decreases. Visual comparison of ECa values and instrument 

height and inverse modelling (inversion, optimization) are often used. However in numerous cases, 

the alternating influencing factors impede the retrieval of adequate results; for example, both texture 

and salinity can cause strong vertical fluctuations. Sudduth et al. [196], Sudduth and Kitchen 

[155,175–179,181,184–188,195–198,201–209], Kitchen et al. [213] and Noellsch [214] used ECa to 

determine the depth to the claypan (the sublayer with 50 to 60% clay, varying in depth from  

0.1 to 1 m) in nonsaline soils (Missouri). A high correlation between increasing ECa and decreasing 

depth to the claypan was observed by Doolittle et al. [184]. The depth of boulder clay was estimated 

by Brus et al. [193], and Bork et al. [191] estimated the loess thickness above basalt. Mapping of sand 

deposition after floods was carried out by Kitchen et al. [187]. In the investigations of Boettinger et 

al. [190] soil depth to the petrocalcic horizon was positively and significantly correlated with ECa. 

Doolittle and Collins [183] reported that bedrock depths on a Pennsylvania site, based on depth 

classes, could be estimated with ECa data.  

Knotters et al. [188] introduced ECa as an auxiliary variable in co-kriging and kriging with 

regression to predict the depth of Holocene deposits. Vitharana et al. [189] improved the content of a 

soil map with the calculation of the depth of a Tertiary stratum. 
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4.5. Relationships to N-turnover, Cation Exchange Capacity, Organic Matter and Additional Soil Parameters 

In addition to the previously listed soil properties, further parameters have been combined with 

ECa readings, including cation exchange capacity, organic matter, bulk density, nutrients (e.g., NO3−, 

Olsen-P) and elements such as Ca, Mg, K, Na (exchangeable or in saturation extract), B, Mo, H and 

other anions. For close relationships, field-wide ECa measurements allow mapping of soil properties 

(Table 4). The dominant target variable was the cation exchange capacity [3,132,135].  

The leaching rates calculated from a field study were related to changes in ECa readings [209]. 

This enabled the derivation of a spatially averaged leaching rate. The spatial distribution of N seems 

to be an increasingly attractive parameter to be estimated via soil conductivity. Eigenberg and 

Nienaber [215,216] and Eigenberg et al. [217,218] related ECa maps made at different times to 

temporal values of available N and other specific mobile ions that were associated with animal waste 

and cover crops, and concluded that ECa can be used as an indicator of the content and loss of  

water-soluble N. Eigenberg and Nienaber [215,219] isolated and detected areas of nutrient build-up 

in a cornfield receiving waste. Different manure and compost rates had been applied for replacement 

of commercial fertilizer. ECa measurements differentiated commercial N-fertilized plots from those 

that had manure applied at the recommended P rate, compost applied at the P rate, and compost 

applied at the N rate. In another publication, the same authors [220] discriminated areas with 

synthetic fertilizer from areas with feedlot manure and compost application. Differences between ECa 

maps before and after the applications were partly explained by N decompositions. Furthermore, 

Eigenberg et al. [221] reported that ECa (EM38 and Dualem-2) soil conductivity appeared to be a 

reliable indicator of soluble N gains and losses in a soil under study in Nebraska, a measure of 

available N sufficiency for corn mainly in the early growing season, and an indicator of  

NO3–N surplus after harvest when soluble N was vulnerable to loss as a consequence of leaching 

and/or runoff.  

Johnson et al. [204] stated that in soils where ECa is dominated by NO3−-N, ECa was applicable 

for tracking spatial and temporal variations in crop-available N (manure, compost, commercial 

fertilizer, and cover crop treatments). Furthermore, the calculation of fertilizer rates for site-specific 

management was possible. Stevens et al. [222] studied ECa as an indirect measure for NH4+ and K+ in 

animal slurries. The predictive capability of soil conductivity to estimate soil nitrate was 

demonstrated by Doran and Parkin [223]. Korsaeth [125] found an explanation of a variance of  

27–69% (average 47%) of topsoil inorganic N concentration by means of ECa. In general, the author 

stated that determination of absolute levels of this parameter was difficult with ECa, but it appeared 

to be quite a robust method for detection of both spatial and temporal relative differences. Some 

authors described relationships between ECa and soil conditions that influenced soil mineral  

N [224,225]. Fritz et al. [224] suggested the application of ECa to predict NO3− concentrations in the 

soil. A comparison of the EM38 and the Veris 3100 sensor cart showed a correlation with soil NO3−, 

but the authors indicated that further studies were necessary to confirm their results.  

The studies of Jaynes et al. [226] and Kitchen et al. [213] assumed a possible relationship between 

soil ECa and N mineralization and denitrification rates. Soil conditions, especially the texture, 

influenced the rate of denitrification and N mineralization [227]. The relationships between soil 

texture and N mineralization and denitrification should aid in developing an in-season variable-rate 

N fertilizer recommendation [224]. Soil organic matter, ECa, and soil texture are properties that might 

aid in predicting mineralization and denitrification in soil. Dunn and Beecher [228] detected large 

differences in surface soil acidity and a strong relationship (R2 = 0.49 to 0.91) compared to ECa readings 

in individual rice fields in NSW, Australia. The proposed ECa levels for the delineation of zones were 

<80, 80–140 and >140 mS m−1 for the EM31 vertical mode, and <80, 80–110 and >110 mS m−1 for the 

EM38 vertical mode. Many rice growers in southern NSW currently have EM maps of their fields. 

Using these maps soil sampling for soil acidity would be a more cost-effective method than grid 

sampling. 

Triantafilis and Momteiro Santos [200] indicated the cation exchange capacity (CEC) as one of 

the most important soil properties because it is an index of the shrink–swell potential and is thus a 

measure of soil structural resilience to tillage. The authors used the readings from EM38 and EM31, 
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and additionally remotely sensed spectral reflections (red, green and blue spectral brightness), and 

two trend surface (Easting and Northing) variables as ancillary data or independent variables, and a 

stepwise MLR model was used to predict the CEC. The x and y variables accounted for any distinct 

drift in the residual error pattern. The correlation coefficient (R2 = 0.76) for the regression model was 

much larger than that achieved with any of the individual ancillary data variables. The adjusted R2 

was 0.69, and the estimated RMSE was 1.86 cmol kg−1.  

In other studies, the results were more confusing. Heininger et al. [229] and Nadler [230] 

indicated that salinity, soil texture, or soil water content were masking the response of ECa to other 

physical, chemical and nutrient levels in soil. Cations, such as Ca, Mg, or K, commonly associated 

with binding sites on soil particles, could influence ECa with variations in ECS (i.e., conductivity of 

the solid soil). However, the common assumption is that in most field solutions, changing levels of 

soil cations have a minor influence on ECS [229,231]. Heininger and Crosier [232] demonstrated that 

under saturated conditions changes in nutrient levels (e.g., soluble N and S), changes in ECWC could 

influence ECa. In a study by Heiniger et al. [229], ECa was evaluated as a means to estimate plant 

nutrient concentrations (i.e., P, K, Ca, Mg, Mn, pH, CEC, and humic content). This study indicated 

that it was unlikely that ECa could be used to directly estimate the soil nutrient content in a field. 

However, the authors suggested that additional research on the relationships of ECa with soil water 

content and soil texture was necessary to determine whether ECa could be used to establish nutrient 

management zones. The authors concluded that “ECa can be valuable tool when used in conjunction 

with multivariate statistical procedures in identifying soil properties and their relationship to 

nutrient availability”. 

According to Martinez et al. [203], ECa can provide inexpensive and useful information to 

capture soil spatial variability and characterization of organic carbon. ECa data were used to elucidate 

differences in soil properties as a consequence of topography and management, explaining >25% of 

the spatial variation. With normalized ECa (ΔECa) the authors successfully applied fuzzy k-means to 

delimit homogeneous soil units related to soil management and the spatial distribution of organic 

carbon. Grigera et al. [131] related soil microbial biomass to organic matter fractions in a field using 

ECa. Soil properties (0–90 cm) that showed higher correlations with ECav (Ct (R = 0.87), clay (R = 0.83), 

total dissolved solids (R = 0.68), and depth of topsoil (R = 0.70)) influenced soil water availability in 

this field. Soil microbial groups were correlated with different soil C fractions in the uper 15 cm and 

were similar across ECa zones. Motavalli et al. [233] assessed variation in soil Bray 1 P levels in litter 

amended landscapes at 0–5 and 5–15 cm depths. ECa was also applied as subsidiary variable in a  

co-kriging method for improving the map accuracy interpolation of P, K, pH, organic  

matter and water content [210]. Jung et al. [207] described a similar effect for the application of ECa. 

Cross-semivariance analysis with ECa as a secondary variable were better than by a simple 

semivariance analysis.  

Bekele et al. [234] reported that ECa was strongly related to ammonium extractable K, organic 

matter (OM), pH and Bray-2 phosphorus with factor analysis but not to ammonium extractable Ca 

and the sum of bases in fields in LA, USA. Furthermore Lukas et al. [127] examined soil chemical 

characteristics (i.e., P, K, Mg content and pH value) and humus content and showed relatively 

balanced, moderately strong correlations with ECa.  

Additionally, the use of ECa for the detection of soil compaction has become increasingly 

important [192,208]. Krajco [208] discovered that the ECa readings measured in the horizontal mode 

distinguished the areas with no compaction above 0.3 m and areas with soil compacted in the entire 

soil profile with less precision. The EM38 operated in the vertical mode was not sensitive enough to 

measure any differences in soil bulk density. 

4.6. Derivation of Soil Sampling Designs  

ECa measurements are frequently applied to devise soil sampling schemes to reduce soil 

sampling points (Table 5) [88,114,115,235,236].  
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Table 5. Literature describing selection of areas for soil sampling with EM38-ECa. 

Study Investigation Object Location of Investigation 

[59] Soil sampling points Ebro River, Spain  

[199] Sampling design West California, USA 

[237] 
ECa base sampling design: response surface sampling design 

(RSSD), stratified random sampling design (SRSD) 
California, USA 

[228] Soil sampling design pH NSW, Australi,  

[238] Mapping sodium affected soils Great Plains, USA 

[204,239] Soil sampling design, soil units West California, USA 

[100,236,

240,241] 
Soil sampling design Southwest USA  

[115] Sampling design for loacation of neutron probe access tubes Cambridgeshire, UK 

[242] 
VQT method (variance quad-tree) in combination of relief 

data and ECa 
Jiangsu Province, China,  

[235] Optimum locations for soil investigations Brandenburg, Germany  

In addition to finding representative locations, the goal is to significantly reduce the number of 

samples required to effectively calculate the target variable. Frequent selection of sampling points by 

means of ECa surveys is performed empirically. In principle, design-based (probability-based) and 

model-based (prediction-based) sampling schemes are applicable.  

Triantafilis et al. [42,45] used the ratio (ECav(EM38)/ECav(EM31)) to determine soil sampling 

points on salt affected areas. Lower ratios appeared when EM38 was sensing the relatively sandy and 

less conductive topsoil. The results of Shaner et al. [243] support the utilization of ECa-directed zone 

sampling as an alternative to grid sampling if the transition zones of soil texture and soil organic 

matter are avoided. Approximately 80% of the samples in grid sites 10 m from the zone boundaries 

were classified correctly compared to the samples <10 m from the boundary, in which only 50–54% 

were classified correctly. Corwin et al. [237] described a procedure that was the basis for the 

development of the ESAP software package [240,241]. In this model-based sampling approach, a 

minimum set of calibration samples was selected based on the measured ranges and spatial locations 

of the ECa readings. This sampling approach originated from the response surface sampling design 

(RSSD) methodology of Box and Draper [244]. The ESAP software was specifically designed for use 

with ground-based EM signal readings. The ESAP software package tried to identify the optimal 

locations for soil sampling (6–20 sites depending on the level of variability of ECa) by minimizing the 

mean square deviation. Zimmermann et al. [235] developed a hierarchical system with (1) ECa 

measurements; (2) kriging; (3) cluster analysis; (4) principal component analysis and (5) formation of 

a pseudo-response surface design to select subsets of appropriate sites for soil sampling. The number 

of samples could be minimized while still retaining the prediction accuracy inherent in statistical 

sampling techniques. Horney et al. [92] suggested a methodology for salt affected soils with the 

following steps: (1) building an ECa map; (2) directed sampling for salinity; (3) as a function in the 

field determination of the estimated improvement requirement and (4) integration into a practical 

spatial pattern. Tarr et al. [245] used stratification of ECa and terrain attributes to derive a 

heterogeneous pasture in relatively homogenous sampling zones with fuzzy k-means clustering. The 

five zones had significant differences in the target variables (i.e., P, K, pH, organic matter and water 

content). However, the reduction of sampling points from 116 to 30 to 15 points resulted in a loss of 

accuracy, but this loss may not have an economic or management consequence to the producer. Yao 

et al. [242] described a completely new method based on Minasny and McBratney [246]. The authors 

developed the application of the VQT (variance quad-tree) method on sampling design with the 

digital elevation model and its derivatives and Landsat TM images. ECa was selected as an additional 

variable, and the spatial distribution map of ECa was used as design detecting salinity. The results 

show that the spatial distribution of soil salinity detected with the VQT scheme was similar to that 

produced with grid sampling, while the sample quantity was reduced to approximately one-half. 

The spatial precision of the VQT scheme was considerably higher than that of the traditional grid 

method with respect to the same sample number. Fewer samples were required for the VQT scheme 
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to obtain the same precision level. The authors suggested that VQT and ECa provide an efficient tool 

for lowering sampling costs and improving sampling efficiency in the coastal saline region. 

4.7. Derivation of Soil Type Boundaries 

Delineating soil classifications has quite different levels of complexity and accuracy. ECa is 

applied to support the derivation of soil types (Table 4). Very often, the first question concerns the 

interpolation of the ECa procedure. Niedźwiecki et al. [247] gave an overview of ECa field-wide 

variability with variograms. The authors recommended an individual interpolation because of 

differing variability between fields. Selection of parameters for semivariograms has a strong 

influence on the ability to identify significant spatial autocorrelation of data. Lag parameter size and 

directional analysis of variance are particular concerns.  

The next question concerns the interpolation of ECa across field boundaries. As a consequence 

of land use, time of measurement, wetness, and fertilization differences between single fields, 

considerable differences in the ECa levels frequently exist. Weller et al. [121] presented a method for 

unifying ECa across boundaries with a “nearest-neighbours ECa correction”. ECa measurements near 

field boundaries were correlated with ECa values of the neighbouring field, resulting in the same 

level of ECa in both fields. This procedure also enhanced the coefficients of determination.   

Another procedure was described by Heil and Schmidhalter [108] (Figure 3). To reduce the levels 

and to obtain reliable ECa values across field boundaries, the following steps were used: (1) The  

field-by-field means (mfield) were subtracted from individual observations (Figure 3b); (2) The 

resulting new ECa (zresidual) values were then used as input to estimate the residual variogram. The 

ECa data were interpolated, and continuous maps of ECa residuals were obtained (Figure 3c);  

(3) Finally, the field-by-field means (mfield) were added back to the estimated point-kriged  

surfaces (zkrig) for each particular field (Figure 3d). With this procedure it is possible to interpolate 

point wise or row wise measurements with a single interpolation calculation.  

  
(a) 

  
(b) 
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Figure 3. Cont. 

  
(c) 

  
(d) 

Figure 3. Procedure of interpolation of ECa across field boundaries. (a) Lanes of ECa –measurements 

with EM38 on arable farmland (16.9 ha); (b) Lanes of ECa –measurements (field-by-field means (mfield) 

were subtracted from individual observations); (c) Interpolation 5 m × 5 m grid of ECa (residuals);  

(d) Interpolation 5 m × 5 m grid of ECa (residuals+local means) 

Nehmdahl and Greve [128] compared soil profile descriptions and interpolated ECa 

measurements to derive areas with more or less similar soil types. Stroh et al. [181] distinguished 

boundaries of soil map units in a relative manner. In different instances, gradients or contrasting 

inclusions within map units were also identified. In this investigation, correlations between ECa 

readings and soil properties such as CEC, pH, particle size distribution and extractable bases were 

low (i.e., explained <6% of the variance) or non-significant. James et al. [178] used confusion matrix 

analysis to determine whether ECa and a clustered k-means algorithm accurately delineated soil 

textural boundaries in a field containing clay loam and sandy loam soils. The agreement between the 

ECa data and the two soil classes was 62%. Hedley et al. [135] derived two soil units (clayey soils and 

silty loamy soils) with a discriminant analysis of an ECa survey. A more detailed prediction was  

not possible.  

Often, the use of ECa is restricted to its application as covariate or the readings are used in a 

relative sense, not as absolute terms. In some studies, combination with further predictors such as 

terrain attributes or yield deliver an acceptable result [179]. Rampant and Abuzar [179] predicted soil 

types from the various combinations of geophysical (EM38, EM31, airborne gamma radiometrics) 

and terrain attributes with a decision tree classifier. Individually, the geophysical data were relatively 

weak predictors of soil information. Using all of the geophysical and terrain data, the soil types were 

predicted very well, with less than 2% of the area misclassified. Clay et al. [248] empirically derived 

soil patterns from ECa readings and elevation data. Generally, well-drained soils in the summit area 

and poorly-drained soils in the valley bottoms had low and high ECa values, respectively. 
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An interesting comparison between ECa and the soil values of the German national soil 

inventory (Bodenzahlen) was presented by Neudecker et al. [249]. In 11 fields in four different 

German regions, R2 varied between 0.1 and 0.71. Highly heterogeneous fields showed a range of R2 

values from 0.03–0.71. The authors concluded that ECa measurements were much better in 

delineating zones of different soil substrates than other, rather subjective methods such as the 

German national soil inventory.  

5. Applications in Agriculture 

5.1. Derivation of Agricultural Yield Variability and Management Zones  

ECa is used to reflect crop yields and to derive management zones. Different studies show that 

crop yields vary due to site-specific differences and temporal climatic changes (Table 6).  

Table 6. Composition of literature with derivations of yield maps, management zones and selection 

of areas for fertilization with EM38-ECa. 

Study Investigation Object 
Location of 

Investigation 

[172] Yield maps, Soil types and ECa Virginia, USA  

[106] 
ECa, NIR, elevation, slope with k-means clustering to define 

management zones 
North Carolina, USA  

[65] Help for define management options with ECa SW, Australia  

[250] Development of predictors of vine yield from ECa New Zealand 

[251] Management zones in viniculture Clare Valley, Australia  

[103] Relationship ECa crop yield North, east Germany  

[252] Management zones on soil NO3 and P sampling variability South Dakota, USA  

[253,254] N-management zones Belgium 

[130,199,

255] 
Soil properties and cotton yield California, USA 

[174] Soil pattern as basis of management zones England 

[12] 
Identifiing management classes with ECa (measured at high and low 

water content) 
North-east Australia  

[154] 
Multi-sensor data (EM38, GPR, FieldSpec) to delineate homogeneous 

zones 
Italy 

[256] Relationships ECa, N-fertilizing demand Southwest Sweden  

[257] Relationship ECa crop yield , management zones Brandenburg, Germany 

[258] 
Establishing of management zones with Corg, clay, NO3, K, Zn, ECa, 

corn yield data 
Colorado, USA 

[259] 
Correlations ECa with yield, sugar content, piercing force, Kramer 

energy in a single year 
Peleponnese, Greece  

[260] Relationship ECa crop yield, management zones Missouri, USA  

[261] Management zones and N applications Missouri, USA 

[262] Management zones delineation software Missouri, USA 

[224] ECa to predict NO3-concentration Dakota, USA 

[131] ECa zones Nebraska, USA 

[263] Distribution of legumes in pastures in dependence of ECa and slope Iowa, USA 

[176] Soil types (derived from ECa) related to yield, K, Mg 
Elbe-Weser-region, 

Germany 

[92] Management zones salt affected sites California, USA 

[264] Development of key properties for delineation management zones North Belgium 

[265] Management zones in a paddy rice field with ECa Bangladesh 

[226,266] Relationship ECa crop yield Iowa, USA 

[267] Management zones with yield, elevation and ECa Iowa, USA 

[132] Relationship ECa crop yield Missouri, USA 

[268] ECa-maps to derive management zones Iowa, USA 

[269] Relationship ECa crop yield, terrain attributes Iowa, USA 
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Table 6. Cont. 

[213] Relationship and classification ECa crop yield 
North central Missouri, 

USA 

[270] Managing and monitoring variability in vineyards Australia 

[271] Management zones with yield, elevation, ECa, aerial photos Nebraska, USA 

[272] Site-specific management of grassland Ireland 

[249] Comparison ECa – German national soil inventory (Bodenzahlen) Bavaria, Germany  

[273] Lime applicationto reduce subsoil acidity Western Australia 

[225] Relationships ECa, N-fertilizing zones Saxonia, Germany  

[274] Senor application in viticulture Australia 

[275] Multiyear ECa – yield relationship Victoria, Australia  

[276] 
Delineation of site-specific management-zones with ECa and 

topographic parameters 
Nile Delta, Egypt 

[277] Data fusion (Terrian attributes, ECa, yield, aerial imagers) Minnesota, USA  

[179] 
Yield zones, yield per year, in combination with terrain parameters 

and other sensors 

North West Victoria, 

Australia 

[164] Relationship ECa crop yield Bavaria, Germany  

[196] Relationship ECa crop yield Missouri, USA  

[278] Relationship ECa − volumetric water content (−35 cm) – yield NRW, Germany  

[279] ECa and yield of apples Ankara, Turkey,  

[42,45] Sampling points with ratio (ECav-EM38/ECa-EM31) NSW, Australia  

[245] Management zones and multilevel sampling scheme Central Iowa, USA  

[280] Management zones with ECa relative differences (ϑij , Eq. 31) SW Spain  

[104] 

Management zones (delineated mainly with subsoil clay from  

((ECav* ECah).5)) 

delivered from ECa) 

Flanders, Belgium  

[281] 
Characterization of soil variation by key variables: pH, ECa, organic 

matter 
Flanders, Belgium  

[121] Interpolation of ECa across field boundaries Bavaria, Germany  

[282] EC and soil inorganic N (no EM38-ECa) Nebraska, USA  

Management (productivity) zones with similar yields and used by farmers to make application 

decisions based upon calculations of the expected yield. The applied methods and additional 

predictors are different in this context. In fact, ECa has no direct relationship to the growth and yield 

of plants, but the spatial variation of ECa is partly correlated with soil properties that do affect crop 

productivity. Several studies have shown this connection [88,127,213,226,271]. The advantage of ECa 

in comparison to yield measurements is its relative temporal stability, which offers a better basis for 

the delineation of management zones than variable yield mapping information does. With cluster 

analysis, Fleming et al. [258] confirmed that management zones represented different suites of soil. 

In one field, soil organic matter, clay, nitrate, potassium, zinc, ECa and corn yield data corresponded 

to the levels indicated by the management zones. In a different field, only the medium productivity 

zone had the highest values for these parameters. Cockx et al. [253,254] used the spatial distribution 

of NO3− in addition to ECa to create nitrogen management zones. The interpolated ECa measurements 

were the input for a fuzzy k means classification. This procedure placed each single point in a 

membership in each class [46]. The method minimized the multivariate within-class variance, and 

consequently, individuals in the same class had similar attributes [283]. Using a principle compound 

analysis, (PCA) Vitharana et al. [189,281] detected the importance of pH, ECa-v and organic matter as 

independent key variables to characterize overall soil variation. The authors identified and delineated 

four classes (with a fuzzy k-means algorithm) with these variables. Clear differences in soil properties 

and landscape positions were found between these classes, and the three-year average standardized 

yields (grain and straw) were also different across the classes. Schepers et al. [277] aggregated 

brightness images, elevation, ECa and yield into management zones using principal component 

analysis in combination with unsupervised classification. Domsch et al. [257] correlated ECa and yield 

within the boundary lines method. In this context, Corwin et al. [284] combined ECa with leaching of 

pollutants and Johnson et al. [204] combined ECa with soil quality parameters (measured as bulk 
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density, water content, clay content, organic matter, N, extract-able P, pH, microbial biomass C and 

N, potentially mineralizable N). In an investigation on claypan soil, Sudduth et al. [196] described a 

negative relationship between ECa and grain yield in a dry year. The correlations with corn and 

soybean in a wet year in topographically highly variable landscape were also negative, as observed 

by Jaynes et al. [226,266]. However, in both studies no significant relationships were observed in years 

with a more normal water supply. In a newer study of claypan areas, Jung et al. [132] described 

negative relationships for corn and soybean in years with more than 150 mm precipitation, while in 

contrast, ECa was positively correlated in years with less than 150 mm precipitation. In both cases, 

the correlation coefficients were not higher than 0.74. However, the authors concluded, “while 

correlation analysis itself is far from a definitive analysis, we suspect this similar pattern (between 

ECa and yield) in correlation is not coincidental”. Kitchen et al. [213] related ECa to yield applying 

boundary line analysis on claypan soils. A significant relationship (boundary lines with R2 > 0.25 on 

most areas) was apparent, but climate, crop type, and specific field information was also necessary 

to explain the structure of the potential yield by ECa interaction. The authors divided the relationships 

between productivity and ECa into four categories: (1) positive; (2) negative; (3) positive in some 

portions of the field and negative in others; and (4) no relationship. The strongest relationships were 

negative, reflecting the tendency of claypan soils to be water-limited for crop production in the 

majority of growing seasons [133]. Figure 4 and Table 7 show the relationships between ECa (EM38 

in both configurations) and yield of the long-term field experiment Dürnast 020 (South Germany, 

(4477221.13E, 5362908.78N), Heil, unpublished). 

Table 7. Regressions between ECa and multi-annual mean of yield (wheat) of the long-term 

experiment Dürnast 020 in dependence of fertilization level (see Figure 1). 

Yield (dt ha−1) Configuration N Equation 

R2 

Signific

ance 

Control plots 
Vertical 12 101.33 − 1.411 × ECa 0.67 *** 

Horizontal 12 64.61 − 0.758 × ECa 0.81 *** 

Fertilized plots (low) 
Vertical 42 106.85 − 0.81 × ECa 0.36 ** 

Horizontal 42 53.466 + 1.394 × ECa − 0.025 × ECa2 0.76 *** 

Fertilized plots (high) 
Vertical 42 111.2 − 0.811 × ECa 0.22 * 

Horizontal 42 76.853 + 0.361 × ECa − 0.012 × ECa2 0.67 *** 

n.s. > 0.05, * 0.05 ≥ p > 0.01, ** 0.01 ≥ p > 0.001, *** p ≤ 0.001. 

 

Figure 4. Relationships between ECa and multi-annual mean of yield (wheat) of the long-term 

experiment Dürnast 020 in dependence of fertilization level (control plots: no fertilizer, fertilized plots 

(low): 100–140 kg ha−1 N, fertilized plots (high): 150–180 kg ha−1 N). 
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Here the application of different N-fertilizers with two fertilization levels has been tested since 

1979. In the Figure 4 the multi annual means of the yields of wheat (1980, 1983, 1986, 1989, 1992, 1995, 

1998, 2001, 2004, 2007, 2010, 2012) were divided in the two fertilization levels and the unfertilized 

control plots. Within this site, soils were mapped as deposits of Pleistocene loess, and the dominating 

soil types were fine-silty Dystric Eutrochrept and fine-loamy Typic Udifluvent (German Soil Survey, 

Bodenkundliche Kartieranleitung 2005). On this productive field (plant available water capacity  

250 mm until 100 cm depth , C-content: 1.4% (0–30 cm) and 0.4% (50–75 cm)) all relationships are 

negative with always significant R2 and also linear or weak quadratic curves. Remarkable is that the 

curves have similar slopes, at least in the higher ECa range. The always lower coefficients of 

determination in the case of the vertical configuration could reflect, that the deeper soil is less 

important to the plant growth.  

After a first visual inspectation the lowest values of yield correspond with higher contents of 

clay. The curve progressions allow further interpretations: 

 The spatial distribution of the yield was at first influenced by the ECa across the field.  

Treatment effects (fertilizing level, fertilizer form) were overlain by soil conditions with different 

ECa values.  

 The height of the yield was secondly assumedly determined by the level of fertilization.  

In claypan soils, Fraisse et al. [260] also used a combination of ECa and topographic features 

(with unsupervised classification) to develop zones and evaluated their ability to describe yield 

variability. By dividing a field into four or five zones based on ECa, slope, and elevation, 10% to 37% 

of corn and soybean yield was explained. In this context, Fridgen et al. [262] described software with 

a similar derivation of the subfield management zone. Kitchen et al. [285] used unsupervised  

fuzzy-k-means clustering to delineate productivity zones with ECa and elevation measurements on 

claypan soils. Productivity zones were also derived by Jaynes et al. [267] based on a series of profiling 

steps in combination with cluster analysis to determine the relationship between yield clusters and 

easily measured terrain attributes (i.e., slope, plane curvature, aspect, depth of depression) and ECa. 

In contrast to the previous investigations, Kilborn et al. [269] found no strong relationships between 

elevation, slope, and soil ECa with respect to biomass yield and composition. The results of Bang [106] 

indicate that clustering with ECa and NIR surveys could be used to delineate management zones that 

characterize spatial variations in soil chemical properties. However, these zones were less consistent 

for characterizing spatial variability in yields across temporal water content variation. Furthermore, 

the author reported that clustering zones developed from ECa values measured under relatively dry 

conditions were particularly effective in partitioning the spatial variability of SOM. It is clear that 

zones developed from clustering elevation and bare-soil NIR radiance were more effective than ECa 

alone in capturing variability in K, CEC, and SOM. Clustering on ECa with elevation and NIR 

provided better zones for these parameters and somewhat reduced the variability associated with 

measuring ECa under different soil water conditions [106].  

A similar praxis was used by Schepers et al. [277]; Chang et al. [252] and Fridgen et al. [262]. 

Cluster analysis of an ECa map alone or with auxiliary data, such as terrain attributes and bare-soil 

images, has been widely used to delineate soil-based management zones. The relationship between 

ECa measurements, soil properties and sugar beet yields in salt-affected soils was studied by Kaffka 

et al. [20]. In these soils, yield was most highly correlated with salinity. This work demonstrated the 

utility of relationships between ECa and crop yield to answer resource input questions. Rampant and 

Abuzar [286] predicted yield zones from a combination of geophysical (i.e., EM38, EM31, airborne 

gamma radiometrics) and terrain attributes with a decision tree classifier. Individually, the 

geophysical data were relatively poor predictors of the yield zones. The combination of all sensors 

and terrain data could predict yield zones quite well, misclassifying only 5% of the area. The 

predictions of yield for an individual year were always worse for yield zones. 

The purpose of the application of the EM38 by Guretzky et al. [263] was to examine the 

relationship of the relief parameter “slope”, ECa, and legume distribution in pastures. The authors 

concluded that slope and ECa data were useful in selecting sites in pastures with higher legume yield 

and showed a potential for use in site-specific management of pastures. Dang et al. [12] used an 
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interesting procedure for identifying management zones on a salinity-affected field. Two surveys of 

ECa measurements were carried out; the first used a relatively wet soil profile (April–May 2009) to 

represent the drained upper limit of soil water, and the second used a relatively dry profile  

(October–November 2009) to represent the lower limit of soil water content extraction following the 

harvest of the winter crop. The authors developed a framework to estimate the monetary value of 

site-specific management options through: (1) identification of potential management classes formed 

from ECa at lower limit of soil water content; (2) measurement of soil attributes generally associated 

with soil constraints in the region; (3) grain yield monitoring; and (4) simple on-farm experiments. 

Islam et al. [264] estimated key properties to identify management zones on loess and sandy 

soils. The authors identified ECa, topsoil pH, and elevation as key properties, which were used to 

delineate management classes and to construct an excellent multiple regression model between yield 

and the key properties. Additionally, Islam et al. [265] described the construction of waterproofed 

housing for the EM38, which was built using PVC pipes for swimming in a paddy rice field. The ECa 

data were classified into three classes with the fuzzy k-means classification method. The variation 

among the classes was related to differences in subsoil bulk density. The smallest ECa values 

representing the lowest yield and also the lowest bulk density. 

There was also a significant difference in rice yield among the ECa classes, with  

Vanderlinden et al. [280] carried out a procedure for characterizing a management system. ECa 

patterns expressed as relative differences (ϑij) were associated with topography, soil depth and soil 

structure, and the authors derived management zones with principal component analysis.  

A very detailed insight into the relationship between ECa and yield was given by  

Robinson et al. [275] for sites in Victoria, Australia. However, the multi-year measurements of yield 

and ECa delivered an inconsistent picture. Significant influences of ECa on yield were found for all 

measurements, but they evidenced alternating directions in semi-arid and rainy environments.  

(1) Decreasing yield was combined with increasing ECa-v when texture-contrast and gradational soils 

with shallow topsoils occurred along with increasing clay content and physio-chemical constraints; 

(2) In soils without significant texture-contrast, in which physio-chemical conditions were more 

favourable for water in the subsoil, higher yields resulted; (3) Positive trends of ECa and yield were 

attributed to the occurrence of higher plant-available water in the root zone in high and moderate 

yield zones. However, the R2 did not exceed 0.15 for all calculations. 

Additionally, the EM38 has been applied in vineyards for describing soil variability to an 

increasing extent [5,15–57,62,70–82,86,90–93,95–270]. Bramley et al. [250] described a close 

relationship between ECa readings from stony shallow soils and trunk circumference. However, 

sufficient predictors for vine vigour were not found in these investigations.  

EM38 has more rarely been applied to apple orchards. Türker et al. [279] produced ECa maps 

and compared them with yield and pomological characteristic maps. As a result, the highest value of 

a non-linear regression between ECa and apple yield was determined with an R2 of 0.94.  

5.2. Improvement of the Efficiency of Agricultural Field Experimentation 

Only a few publications reported about the application of ECa readings to improve the efficiency 

of field experiments. An accurate comparison of treatments within agricultural field experiments is 

the primary objective of these evaluations. Spatial soil variability can have adverse effects on the 

accuracy and efficiency of such trials (Table 8). 

Table 8. Applications of EM38-ECa for improving the efficiency of field experiments. 

Study Investigation Object Location of Investigation 

[173] ECa to derive more homogeneous lacustrine-derived soils Iowa, USA 

[204] Classification parameter for block design California, USA  

[287] 
P-content in a field experiment with different levels of 

manure applications 
Michigan, USA  

[288] 
Comparison of yield between strip trials, partly ECa; 

simplified evaluation method 
South, west Australia 
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Kravchenko et al. [289] used ECa as a covariate to improve the accuracy of P values on field with 

different levels of manure applications. Standard errors for the means of P with ECa as a covariate 

were smaller than those for which ECa was not used as a covariate. In soils with medium and high 

ECa values, the control treatment (no manure) had a significantly lower P concentration.  

Johnson et al. [204] applied field wide ECa readings as a classification parameter for a block 

design. Blocks were located in homogeneous areas based upon measurements of soil parameters that 

are significant for yield. The authors noted that ECa classification can be used as a basis for blocking 

only when ECa and yield are correlated. On these sites, which were described by Johnson et al. [204], 

the dominating factors were salinity and clay content. The authors described the application of ECa 

as a “compelling tool in statistical design”. 

The initial point of the publication of Lawes and Bramley [288] is the fact that farmers and their 

advisers are often not able to implement methods that are necessary for evaluation trials on their 

farms. The authors explore a new and simple approach to the analysis of farmer strip trials and the 

spatial variability of treatment response. Yield data descriptions with a linear model that accounted 

for the spatial autocorrelation in the data and a moving pairwise comparison of treatments were 

applied by the authors. The results suggest that the pairwise comparison adequately identified 

treatment differences and their significance. This method can be readily implemented and expanded 

with ECa readings, and it offers an important advance to facilitate on-farm experimentation using 

precision agriculture technologies. 

Brevik et al. [173] indicated a need to investigate the application of ECa techniques in fields with 

more homogenous soil properties. For these investigations, the authors selected a field with 

lacustrine-derived soils that exhibited only weak spatial variability in soil properties. The highly 

uniform ECa readings obtained did not allow differentiation of soil map units with the ECa data. 

However, the results did confirm the uniform nature of the soils in the field, a critical criterion for 

precision agriculture applications. An example of the application of conductivity values is given  

in Table 9 [4]. 

Table 9. Simulation of the yield (1980–2012) with ANOVA and ANCOVA with the factors fertilizing 

level and fertilizer-no. and the covariates ECa and relief parameters. 

Target Variable, 

Years 
Model and Effects 

Signifi

cance 

Partial Eta-

Square  

Adjuste

d R2 

RMSE 

(dt ha−1) 

Yield (dt ha −1), 

mean 1980, 1983, 

1986, 1989, 1992, 

1995, 1998, 2001, 

2004, 2007, 2010, 

2012 

Adjusted model 

Constant 

Fertilization level 

Fertilizer no. 

Fertilization level*Fertilizer no. 

0.008 

0.000 

0.000 

0.414 

0.971 

0.313 

0.998 

0.258 

0.081 

0.018 

0.18 3.26 

Yield (dt ha −1)3, 

mean (1980, 1983, 

1986, 1989, 1992, 

1995, 1998, 2001, 

2004, 2007, 2010, 

2012 

Adjusted model 

Constant 

Fertilization level 

Fertilizer no. 

Fertilization level* 

Fertilizer no.  

ECa (EM38-h)^3 

lg10(ECa (EM38-v)) 

Channelnetwork^3 

TWI^3 

0.000 

0.007 

0.000 

0.000 

0.145 

0.000 

0.000 

0.001 

0.024 

0.904 

0.106 

0.764 

0.341 

0.131 

0.275 

0.276 

0.144 

0.075 

0.88 1.29 

Significance: n.s. > 0.05,   * 0.05 ≥ p>0.01, ** 0.01 ≥ p > 0.001, *** p ≤ 0.001; Partial eta-square:  

Measure of sensitivity to the correlated independent variables; Adjusted R2: adjusted R2 (coefficient 

of determination).  

The relationships presented in Section 5.1 between ECa and yield are here integrated in a 

variance of analysis (ANOVA) and an analysis of covariance (ANCOVA) with the target to model 

the multi-annual yield of the long-term experiment Dürnast 020. In the ANOVA only the factors 
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“fertilizing level“ and “the form of fertilizer” have been considered. To enhance the accuracy of the 

simulation the covariates ECa as well as topographical parameters have been added. The ANOVA 

procedure delivers with the fertilization level as the single influencing factor only a weak result  

(R2 = 0.185, RMSE = 3.26 dt ha−1). In contrast to this result the application of the ANCOVA introduced 

the factors fertilization level and fertilization no. and the covariate ECa (EM38-h and EM38-v) in the 

simulation. The R2 of 0,875 and a RMSE with 1.29 dt ha−1 indicate a severe enhancement in comparison 

to the ANOVA. The partial eta-square illustrates that the introduction of the ECa readings was the 

main reason of this improvement. The topographical parameter channelnet (channel network base 

level (-)) and TWI (topographical wetness index (-)) had only minor meaning.  

Here, ECa has been shown to be a useful indicator of soil variability. Compared to the standard 

analysis ANOVA, an ANCOVA with ECa as covariate (and also topographical parameters) reduced 

RMSE and enhanced R2 for treatment means and improved the accuracy of this field experiment.   

5.3. Additional Application of EM38 in Agriculture and Horticulture 

Additionally, some publications describe the use of ECa to assess environmental susceptibility 

and/or effects (Table 10).  

Table 10. Additional applications of EM38-ECa in agriculture and horticulture. 

Study Investigation Object Location of Investigation 

[234] Corg, K, pH, Bray-2 P, Louisiana, USA 

[290] 
Detecting soil properties as indicators for population density 

of Redheaded cockchafer (Adoryphourus couloni) 
Victoria, Australia  

[215,217,

219] 
Specific ions that are associated with animal waste Nebraska, USA  

[220] N decomposition, organic and artificial fertilizer Nebraska, USA  

[221] 

ECa as an indicator of N gains and losses, available N 

sufficiency for corn in early stage and NO3-N surplus after 

harvest 

Nebraska, USA  

[291] 
ECa as indicator for soil conditions which are prefered by 

Heterodera schachtii 

North Rhine-Westphalia, 

Germany  

[292] Herbicide partition coefficients Iowa, USA  

[233] Variation in soil testing P Missouri, Oklahoma, USA  

[293] 
Part of fungicide application models in combination with 

ratio vegetation index 
Denmark 

[294] Weed distribution, herbicide injury in dependency of ECa 
North Rhine-Westphalia, 

Germany  

[222] NH4, K in animal slurries Ireland 

Jaynes et al. [292] correlated ECa readings with herbicide partition coefficients. The maps are 

useful for determining areas with a higher leaching potential for herbicide (atrazine) application. 

Olesen et al. [293] developed two different algorithms (an empirical model and a causal model) for 

spatially varying fungicide applications. Both models make use of a ratio vegetation index and EM38 

measurements. ECa maps describe the soil characteristics, in particular the soil clay content.  

Hbirkou et al. [291] used ECa maps for constructing relationships between ECa and the beet cyst 

nematode, Heterodera schachtii. This nematode prefers deep soil with medium to light soil and  

non-stagnic water conditions. Correlations between ECa and nematode population density were 

moderate (R2 = 0.47) and strong (R2 = 0.74). Management maps based on ECa and soil taxation maps 

indicated areas with different soil-related living conditions for H. schachtii. These maps could make 

farmers able to improve site-specific management strategies on nematode-infested fields. 

Grigera et al. [131] created four ECa zones from ECa readings, based on ranges of both 

configurations using an unsupervised classification. Soil microbial groups were correlated with 

different soil C fractions in the upper soil (−15 cm) and were similar across ECa zones. Zone 

distribution and biomarkers correlated in dependence of the fractions of particulate organic matter 

(fine particulate organic matter: bacterial (R = 0.85), actinomycetes (R = 0.71) biomarker 
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concentrations; coarse particulate organic matter: bacteria R = 0.69, actinomycetes R = 0.48). In 

contrast, fungal (R = 0.77) and mycorrhizal (R = 0.48) biomarker concentrations were correlated only 

with coarse organic matter.  

6. Application of EM38 in Archaeology  

The application of the EM38 device is not restricted to soil properties; it also detects extrinsic 

components (Table 11).  

Table 11. Additional applications of EM38-ECa in archaeology. 

Study Investigation Object Location of Investigation 

[295] Detection of graves with inphase and quadphase readings Maryland, USA  

[296,297] Prehistoric earthworks with measurements in inphase mode Ohio, USA  

[298] Metal objects from the 18th century Canada 

[299] 
Removing of the effect of elevation on the distribution of ECa 

readings 
Santa Catarina State, Brazil  

[300] Comparison EM38 fluxgate gradiometer Belgium 

[301] Medieval manor in the dutch polders Netherlands 

[302] Area prospection with EM38 and MS2D Tundra region, Sweden 

Ferguson [298] applied ECa values to find metal objects in a settlement area from the 18th 

century. Measurements of ECa also appear to be suitable to search for graves [303]. Low values can 

indicate a proximity to metal, but high conductivity has been associated with grave shafts at  

one cemetery.  

A more sophisticated procedure for archaeological detections was described by Dalan and 

Bevan [296]. An EM38 meter, which was operated in the inphase mode, measured the susceptibility 

of the top half-meter of soil. This susceptibility sounding was performed using a series of heights 

from 2 m to the surface, with readings taken at intervals of 5 cm. These measurements were analysed 

with the aid of the depth sensitivity function of McNeill [304]. In this manner, the authors could detect 

magnetic layers to a depth of 50 cm. 

Viberg et al. [302] combined the EM38 with the MS2D (Bartington MS2 magnetic susceptibility 

meter). The anomalies contained in the survey data were explained by the subsequent archaeological 

excavation. A rubbish pit which consist mainly of organic material and fire-cracked stones was 

detected in both the MS2D and EM-38 data. This study of Simpson et al. [301] used additionally a 

fluxgate gradiometer measurements on an archaeological site. The results of the first survey showed 

very strong magnetic anomalies in the central field, which were caused by the brick remains of the 

castle. The most useful results with the EM38 were obtained from the magnetic susceptibility. Its 

anomalies corresponded well with the gradiometer anomalies. To enhance ECa maps, Santos et al. 

[299] recommended a simple procedure to eliminate the effect of elevation on ECa. In the experience 

of the authors, soil anomalies are partly changed by changing the elevation within an investigation 

area according to the water table depth or the conductive sediment layer. With a linear dependence 

between conductivity and the site elevation the influence of topography was removed. Corrected ECa 

maps substantially improved the recognition of anomalies. These maps also show a greater similarity 

with magnetic susceptibility maps, with both identifying archaeological structures of interest: a  

well-structured fireplace and a concentration of ceramic fragments. 

7. Conclusions and Closing Remarks 

There is no doubt that EM38 measurements have an increasing importance in exploration of 

areas, but weaknesses/unclarities of the method are also described in the literature:  

 The interpretation and utility of ECa readings are highly location and soil-specific; the soil 

properties contributing to ECa measurements must be clearly understood. From the various 

calibration results, it appears that regression constants for relationships between ECa, ECe, soil 

texture, yield, etc. are not necessarily transferable from one region to another. Several factors 
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affect the strength of the signal and therefore, the relationships. In addition to texture, salt 

concentration and other physicochemical properties, calibrations are further affected by the 

relative response of the signal according to depth, the non-linearity of the signal and the 

collinearity between horizontal and vertical readings. The soil parameter with the greatest 

influence on ECa is also the best derivable. 

 Only a few authors [108,196] account for the influence of the farming system, crop biomass, 

applications of fertilizer at the time of measurement on ECa distributions. Most of the identified 

soil parameters that influence ECa have significant interdependency and can thus provide 

multivariate effects on ECa.  

 The modelling of ECa, soil properties, climate and yield are important for identifying the 

geographic extent to which specific applications of ECa technology (e.g., ECa – texture 

relationships) can be appropriately applied. 

 In the case of detecting salinity, obviously better results are achieved if both EM38 readings 

(vertical and horizontal) are combined with ECe values from different depth ranges. 

Nevertheless, Vlotman et al. [305] posed the question about the need for converting the ECe from 

ECa. As McKenzie [24,25] showed, a classification of salinity tolerance level of different crops is 

also possible only with EM38 readings. A partitioning in areas of low, medium and high salinity 

with measurements in a single mode or with a combination of v- and h-mode is often a sufficient 

inventory of the salinity distribution. But it is necessary to take into account, that on the one field 

e.g., 60 mS m−1 has salt problems while another field with the same reading does not have such 

problems. Therefore ECe will continue to be important at least in the near future.  

 The quality of a regression is often determined by a sufficient range of dependent and 

independent variables. Delin and Söderström [124] noted that when the ECa data were correlated 

with the clay content over the whole farm, the result was much better then when the correlation 

was restricted to single zones. This quality is also better if the target variable is also the dominant 

ECa-influencing factor.  

 The construction of soil sampling designs with ECa readings is limited to those properties that 

correlate with ECa. Other parameters require some other sampling approach such as random, 

grid, or stratified random sampling.  

The world-wide application of the EM38 (and also of other soil sensors) is very varying:  

 It seems that the detection of salinity is still the main area of application.  

 Site-specific management in agriculture with the application of ECa is still in Germany in an 

initial phase of adoption among farmers. Predicting the future is difficult. Nonetheless, a greater 

presence of site-specific crop management based on soil detection is to be hoped for.  

 Furthermore in Germany increases the investigations in improving soil maps and in detecting 

soil functions, including: plant available water, sorption capacity, binding strength for heavy 

metals, filtering of unbound substances and natural soil fertility. Additionally, soil protection 

measures are also indicators for erosion prevention, retention of nutrients, and 

conservation/enhancement of carbon contents (based on good agricultural practice after Article 

17, German Soil Protection Act). The selection of soil functions is based on the German Soil 

Protection Act (LABO—Bund-Länder-Arbeitsgemeinschaft Bodenschutz). Here it is not 

common sense to carry out this also with EM38. Until now it is not well known that, compared 

to traditional soil survey methods, EM38 readings can more effectively characterize diffuse soil 

boundaries and identify areas of similar soils within mapped soil units. This gives soil scientists 

greater confidence in their soil mapping.  

 The application in forests is world-wide rather seldom. But also here is an enormous potential 

to improve the existing site maps and to test the water distribution between the trees.  

 The improvement of evaluation of field experiments with ECa readings as covariate is more 

rarely used. The spatial variability of soil properties can have adverse effects on the accuracy 

and efficiency of field experiments. Here is a great potential to take into account the soil 

conditions by using ECa readings.  
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 The fusion of the data of other sensors also shows great potential. The idea behind the 

combination of proximal soil sensors is that the accuracy of a single sensor is often not sufficient. 

The reading of one sensor is affected by more than one soil property of interest. The fusion of 

sensor data can overcome this weakness by extracting complementary information from 

multiple sensors or sources. Until now to an increasing extent, the readings of EM38 are 

evaluated in combination mainly with VIS–NIR and a gamma-ray-spectrometer.  

 Many of the instruments measure at the point or sample scale, such as soil moisture probes and 

tensiometers, while remote sensing devices determine regional patterns. But these techniques 

are limited in the depth of penetration into the subsurface.  

Here geophysical methods have a positive impact, obtaining data at a range of spatial scales 

across fields. This survey has shown that considerable progress has been made in detection and 

understanding of soil functions within the last decades. Applications of practical sensors such as the 

EM38 are needed to achieve sustainable agriculture, to optimize economic return and to protect the 

environment, especially the soil.  

Acknowledgements: The BMBF Project CROP.SENSE.net No. 0315530C and the BMBF Project Bonares  

No. 031A564E funded this research. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Abbreviations 

CEC Cation exchange capacity 

ECa Apparent electrical conductivity 

ECav Apparent electrical conductivity, measured in vertical mode 

ECah Apparent electrical conductivity, measured in horizontal mode 

ECe Electrical conductivity of aqueous soil extracts EC1:5, EC1:2 or EC1:1, soil/water 

suspensions) 

ECp ECa calculated by using predictive equations 

ECref Quotient of the measured ECa and the EC 

θv, θw Weighted water content after vertical and horizontal mode 

Z Soil depth 
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