Analysis of Population Structure

Bertrand Servin
INRA Animal Genetics
Joseph Pickrell
Harvard Medical School

Synbreed Winter School, Salzburg, November 2012

Outline

- 1. What do we call population structure?
- 2. Why do we care?
- 3. How do we model / infer it ?

- Morning: review of two popular approaches
- ► Afternoon: Recent methodological developments and practical

Outline

Introduction

Latent Group Modeling of Population Structure

Capturing Structure with PCA

Relationships between the two approaches

Population Structure

Definition

The genetic structure of a population characterizes the **distribution of genotypes** across individuals. A population is said to be structured when this distribution is **heterogeneous across individuals**.

Population Structure

- Consider a sample of N individuals genotyped L markers (SNPs)
- ▶ **G** is the $N \times L$ matrix of observed genotypes

Unstructured case

The homogeneous (unstructured case) corresponds to the situation where, at any locus ℓ on the genome, for all individuals:

$$g_{\ell} \sim \mathcal{B}inomial(2, p_{\ell})$$

Structured case

 $p_{\ell} \rightarrow p_{i\ell} = f(\theta_i)$ varies across individuals, affects the whole genome.

Causes of population structure

- ► Any phenomenon that affects gene flow between lineages through time will give rise to structure
 - ▶ Restricted mating: livestock breeds, closed germplasms ...
 - ▶ Geography: strong or soft (isolation by distance) barriers ...
- Unstructured samples are the exception.

Why do we care?

Inference of the history of a sample

- Today's structure is caused by (unknown) demographic events in the past
- Characterizing and modeling population structure informs on these events

GWAS

- Sample of individuals with measured phenotype of interest
- ▶ By chance phenotype variation correlates with genotype heterogeneity at a locus (structure) : false (non causal) associations

Null model for genotype distribution

► Help to pinpoint outlying (selected) regions in the genome

Two common approaches to analyse population structure

Model-based the structure arises from latent sub-populations (clusters):

- within a cluster genotype distribution is homogeneous (Hardy-Weinberg)
- ► STRUCTURE model(s) (Pritchard, Stephens and Donnelly (2000))

"Model-free" Principal Component Analysis

Outline

Introduction

Latent Group Modeling of Population Structure

Capturing Structure with PCA

Relationships between the two approaches

Principle

- Underlying the observed genotypes, the sample is structured in latent (unobserved) groups = clusters.
- ▶ Simplest case: one individual belongs to one group (z_i)
- ▶ If we knew the cluster memberships:

$$g_{i\ell}|z_i=k\sim\mathcal{B}inomial(2,P_{k\ell})$$

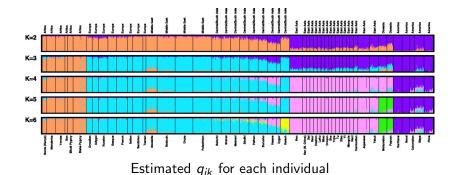
where $P_{k\ell}$ is the allele probability at locus ℓ in cluster k.

▶ This defines the data-augmented likelihood : P(G|Z,P)

Inference

$$P(\mathbf{Z}, \mathbf{P}|\mathbf{G}) \propto P(\mathbf{G}|\mathbf{Z}, \mathbf{P})P(\mathbf{Z})P(\mathbf{P})$$

- ▶ Given this model, inferring population structure is :
 - Assigning individuals to clusters : $P(\mathbf{Z}|\mathbf{G})$ posterior probability of each cluster for each individual
 - **E**stimating allele frequencies in each group: P(P|G)
- ► Technically, this is done using MCMC (in the original paper)


Incorporating Admixture

- ▶ Simple model assumes one individual comes from one group.
- But one genome can be a mosaic from multiple populations = admixture (partial barrier to gene flow)
- $ightharpoonup q_{ik}$, proportion of the genome of individual i coming from cluster k.

$$g_{i\ell}|q_{ik} \sim \mathcal{B}inomial(2, p_{i\ell})$$

$$p_{i\ell} = \sum_{k=1}^{K} q_{ik} P_{kj}$$

Example: HGDP Rosenberg et al. (2002)

Incorporating Admixture Linkage Disequilibrium

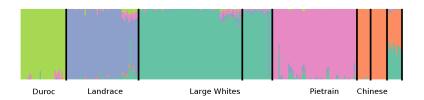
- ► After admixture events, whole chromosomes are inherited from a single "cluster"
- Through time, recombination will break these chromosomes
- However, close loci will tend to originate from the same "cluster".
- STRUCTURE's Linkage Model incorporates :

$$Pr(z_{\ell+1}=k'|z_{\ell}=k,r,Q)$$

which depends on a recombination parameter r

► Technically becomes a Hidden Markov Model

Correlated Allele frequencies


- Populations underlying data are not independent
- Simple model: arise from a common ancestral population, with a star-like phylogeny
- ► Consequence: correlation between allele frequencies
- Structure F model.

STRUCTURE on large SNP datasets

- ▶ In the original implementation of the Pritchard *et al.* model, parameter estimation is performed via MCMC
- Offers posterior distribution of (the numerous) model parameters
- ► For large SNP datasets, running times become (very) large
- ▶ Admixture Software (Alexander et al., 2009) offers a solution to quickly get parameter estimates (**Q** and **P**).
- ▶ Does not implement the linkage or F model

Example of Pig breeds

- Clear breed structure
- mislabeled individuals
- small amount of admixture within pure breeds
- synthetic line shows expected contributions from founder origins

Outline

Introduction

Latent Group Modeling of Population Structure

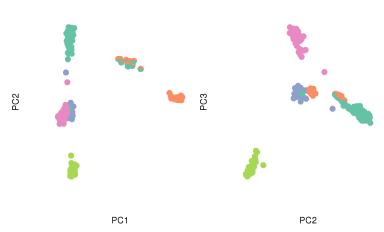
Capturing Structure with PCA

Relationships between the two approaches

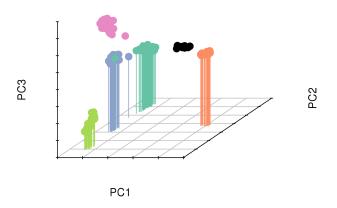
Principle

- ▶ Given in Patterson, Price and Reich (2006)
- Consider the matrix of genotypes G
- Center and standardize each column (SNP genotypes) : M
- ► $\mathbf{F} = \frac{1}{L}\mathbf{M}\mathbf{M}'$ is the kinship matrix between individuals, estimated from SNP data.
- Perform Eigen-decomposition of F, i.e. find the matrix of eigen-vectors U and corresponding eigen-values λ satisfying:

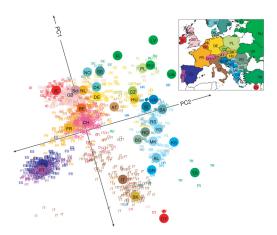
$$F = U\Lambda U'$$


where Λ is the diagonal matrix with λ_i on the diagonal

PCA captures axes of variation in kinship


- ► The eigen-vectors (the principal components) define "axes of variations" in kinship
- ▶ Ordered by importance (large λ values)
- ► The first principal components capture strong effects on the variation in genotypes = population structure effects.
- ▶ Indeed, there is a genealogical interpretation to PCA on genetic data (McVean 2009)

Back to pigs


PCA captures the structure in individual breeds, and places admixed individuals between the contributing populations.

Back to pigs

PCA captures the structure in individual breeds, and places admixed individuals between the contributing populations.

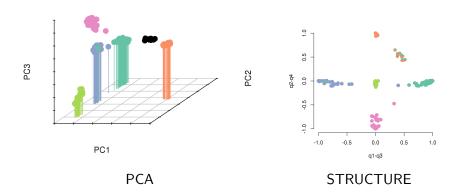
PCA mirrors geography in Europe (Novembre et al. 2008)

In these data, the main axes of variation correspond to space (geography)

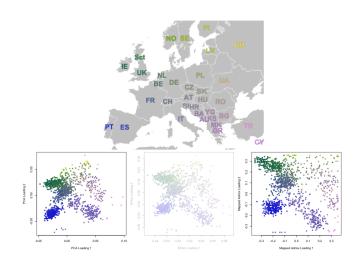
Conclusions on PCA

- Fast
- Can capture continuous variation (clines, isolation by distance
 ...) better than original STRUCTURE models
- ► Lack the interpretability of inference based on population genetics models.
- Influenced by sample sizes

Outline


Introduction

Latent Group Modeling of Population Structure


Capturing Structure with PCA

Relationships between the two approaches

Are they so different? Pigs

Are they so different? Europeans

Engelhardt and Stephens (2010)

A unified framework

Engelhardt and Stephens (2010) show both approaches can be seen as modeling:

$$E[g_{ij}] = \sum_{k=1}^{K} \Lambda_{i,k} F_{k,j}$$

- ▶ *k* indexes PCs (PCA) or clusters (STRUCTURE)
- $ightharpoonup \Lambda_{i ullet}$: PCA loadings , STRUCTURE's admixture proportions
- ▶ F_{•j}: PCA factors, STRUCTURE's cluster mean allele frequencies (×2)

while imposing different constraints on Λ and F. Opens the floor to new models ...

Going further

- ▶ PCA and STRUCTURE models do not incorporate explicitly hierarchical structure of populations: how to infer structure with trees / graphs ?
- ► How do we map back admixture on the genome ? identify admixture on individual chromosome segments
- Come back this afternoon to know.

Cited Papers / Suggested Readings

Theory

Pritchard et al. (2000) Genetics. Original STRUCTURE paper.

Patterson et al. (2006) PLoS Genetics. Eigen-analysis of population structure

McVean (2009) PLoS Genetics. Genealogical interpretation of PCA.

Engelhardt and Stephens (2010) PLoS Genetics. Unified framework linking PCA and STRUCTURE.

Data Application

Rosenberg et al. (2002) Science. Structure in the Human Genome Diversity Project

Novembre et al. (2008) Nature. PCA mirrors geography in Europe.

