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Summary 
This manual presents a brief introduction to statistical analysis of phenotypic data derived 
from replicated, partially replicated and unreplicated experimental designs most commonly 
used in plant breeding trials, as well as from a series of trials. Key elements of trial designs, 
including genotypes, plots, blocks, locations and trials, and their relationships to each other 
and the basic statistical models for analysing results of experiments based on selected 
common designs are introduced and described. The manual provides some insights and 
practical tips on when it is appropriate to represent genotypes, blocks or locations as random 
or fixed factors in statistical models for plant breeding experiments. Illustrative example 
analyses for the selected designs, based on empirical data sets, are provided, as are generously 
annotated program codes for implementing the example analyses in the MIXED procedure of 
the Statistical Analysis System (SAS) and in the R-Asreml package. The manual also 
highlights the statistical analysis of genotype  environment interaction and stage-wise 
analysis of phenotypic data. This version (Version 1.0) of the manual is still a work in 
progress as it were. We intend to expand the manual to encompass the transition from 
phenotypic data analysis to genomic selection once the pertinent maize marker data set for the 
Synbreed Project becomes available. We also intend to further develop the material on 
analysis of genotype  environment interaction and on modelling the variance heterogeneity 
associated with such interaction. The planned expansion will pay more particular attention to 
modelling genotype  environment interactions using a variety of variance-covariance 
structures, including those that account for variance heterogeneity, especially for a series of 
experiments conducted at multiple locations. We welcome constructive comments and 
suggestions on what could still be added to the manual or how it may be improved.  
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1 Introduction 
This manual explains how to do phenotypic analysis of field trial data from plant breeding 
experiments in a step-by-step fashion and how to feed the information resulting from the 
analysis into genomic selection. A brief introduction to the statistical analysis of phenotypic 
data from plant breeding experiments, with a strong focus on mixed models is presented. Our 
focus on mixed models reflects both their popularity in phenotypic and genomic analyses and 
the current focus of our research. The manual is thus not intended to be either comprehensive 
or exhaustive. The presentation emphasizes the key practical considerations and challenges in 
the analysis of phenotypic data and illustrates these using examples based exclusively on real 
experiments. These include the salient considerations in selecting particular mixed models, 
based on several factors including the design of breeding trials. Accordingly, we present the 
key elements of typical plant breeding experimental designs including trials, replicates, blocks 
and plots and clarify their relationships. We accomplish this using several examples of 
designs commonly used in plant breeding experiments and showing how trials, replicates, 
blocks and plots are often organized to generate specific designs. The four basic designs we 
examine in some detail are the alpha, lattice, augmented and augmented p-rep designs. For 
each design we present its characteristic structural layout, formulation of a pertinent mixed 
model and an example empirical dataset. Moreover, we provide extensive example code for 
analysing the selected phenotypic data using the MIXED procedure of SAS and R-Asreml. 
Each code is annotated in sufficient detail for ease of comprehension and immediate 
application.  
 
A crucial issue when using mixed models relates to deciding which effect should be treated as 
fixed, random or both. We reflect on some considerations and offer practical suggestions that 
can aid such decisions, particularly for blocks, locations, genotypes and location-genotype 
interactions. Lastly, we consider the analysis of a series of experiments. 
 

2 Experimental designs in plant breeding trials   
Statistical analysis of phenotypic data in plant breeding is crucially dependent on the design 
of experiments used to generate the data. As a result, understanding the logic and structure 
underlying experimental designs commonly used in plant breeding is basic to understanding 
and effectively using statistical models for phenotypic data analyses. We therefore first take a 
brief and informal look at some of the designs commonly used in plant breeding trials as a 
basis for motivating the statistical models used for phenotypic data analysis in § 2.3.  
 
In early generation testing, normally many entries (also known as varieties, cultivars or 
genotypes) are available for testing. But the number of entries that can be tested is often 
limited by space and other resources necessary for the proper conduct of trials even though 
the expected genetic gain may be larger for selections based on screening many genotypes 
than for those based on more precise assessments of a small subset of genotypes (Kempton 
and Fox, 1997). A practical compromise often made involves the use of unreplicated trials. 
Moreover, incomplete blocks are often used when many entries are tested to minimize the 
error variance within blocks. As well, replicated checks (standard varieties) are often used to 
enable estimation of the error variance between plots and to adjust for local environmental 
effects. Commonly used designs which satisfy these constraints include the augmented and 
augmented p-rep designs. Yet other widely used designs in this regard are the alpha and 
lattice designs. We therefore first briefly introduce each of these four designs and the 
statistical models typically used to analyse phenotypic data derived from each design in 
section § 2.3. But before we delve into the details of these designs it is helpful to introduce, 
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define and clarify the essential building blocks of plant breeding experiments and how they 
relate to one another. 
 

2.1 Trials, replicates and blocks and their relationships in plant 
breeding experiments 

Several plots can be grouped together into complete blocks or incomplete blocks. As with 
plots, several blocks (complete or incomplete) can be grouped into replicates, which, in turn, 
can be grouped to form trials. A key reason for such grouping is to account for variability 
between different environments within a location. Another reason is that it is often not 
possible to sow or harvest all genotypes on the same day. All incomplete blocks within 
replicates in which cultivars were sown or harvested on the same day may thus be grouped 
together into one trial to take account of the variation in sowing or harvest dates. Figure 1 
presents a schematic layout of a lattice design illustrating the relationships between plots, 
blocks, replicates and trials (Piepho et al., 2006).  
 

          Trial 1 
  Replicate 1 Replicate 2 
  Block 1 Block 2 Block 3 Block 4 Block 5 Block 1 Block 2 Block 3 Block 4 Block 5
Plot 1 5 14 17 4 13 6 C1 2 3 9 
Plot 2 C4 8 9 20 18 C5 10 7 C3 19 
Plot 3 16 2 C2 10 11 15 13 16 11 12 
Plot 4 6 19 15 C3 C5 4 17 20 1 18 
Plot 5 3 C1 1 12 7  14 5 C2 8 C4 
 

          Trial 2 
  Replicate 1 Replicate 2 
  Block 1 Block 2 Block 3 Block 4 Block 5 Block 1 Block 2 Block 3 Block 4 Block 5
Plot 1 C3 29 C2 26 21 24 C3 C1 32 C4 
Plot 2 38 C1 23 32 C5 37 22 26 35 38 
Plot 3 27 37 30 24 34 C5 40 27 C2 31 
Plot 4 28 25 31 40 33 39 30 23 21 33 
Plot 5 35 36 39 C4 32  28 25 34 29 36 

 
Figure 1. A schematic diagram showing sets of five incomplete blocks grouped into two 
replicates and sets of the two replicates grouped into two trials in a lattice design. Each 
incomplete block has four entries (i.e., genotypes or cultivars) and one check (C1-C5). 
 

2.2 Types of common experimental designs used as examples in 
this manual  
Experimental designs in plant breeding can be classified into (1) replicated trials and (2) 
unreplicated trials each of which encompasses a variety of designs. The replicated designs are 
exemplified by the randomized complete block, alpha and lattice designs. The unreplicated or 
partially replicated trials, on the other hand, are typified by the augmented design with 
replicated checks and the augmented p-rep design in which checks are replaced with entries of 
interest. Table 1 presents the generic design types, specific examples of each and links to 
basic statistical models applicable to each design.  
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Table 1: Types of experimental designs used in examples for this manual. 
 
Replicated/ 
unreplicated 

Type of experimental design Basic model 
 

Replicated Randomized complete block design (§ 2.4.1) Table 2 
 Resolvable incomplete block designs  
 - Alpha-designs (§ 2.4.2) Table 3 
 - Lattice designs (§ 2.4.3) Table 3 
Unreplicated Augmented design, checks in blocks (§ 2.5.1) Table 2 

 Augmented p-rep design, replicated entries in blocks  
(§ 2.5.2) 

Table 3 

 

2.3 Basic statistical models for common types of plant breeding 
trials  
Breeders typically conduct a trial (TRL) at multiple locations (LOC). A single trial usually 
comprises a limited number of entries (GEN). In order to accommodate many entries, several 
trials are often conducted side-by-side in the same locations. Appropriate statistical models 
for analysing plant breeding trials thus vary understandably with the trial design. For ease of 
application, we identify several stylized models and the generic types of trial designs (Table 
1) for which they are appropriate. Tables 2 and 3 give an overview of the basic models used 
for analysis depending on the type of trial design, the number of trials (single or several) and 
locations (single or several) under consideration. While Table 2 considers trials with one level 
of blocking, Table 3 looks at trials with two levels of blocking. When analysing several 
locations, it is crucial to always add a location  genotype interaction effect, because from 
experience, such interactions are known to be almost always present. Conversely, for a given 
location, it is usually assumed that blocking factors (TRL, REP and BLK = block) do not 
interact with treatments (GEN). 
 
Table 2: One level of blocking (BLK = block) per trial (TRL) and location (LOC). A forward 
slash (/) between two factors means that the factor after the slash is nested within the factor 
before the slash. So, for example, TRL/BLK means that blocks are nested within trials. A dot 
(.) between two factors, such as TRL.BLK, means a crossed effect and not an interaction 
effect that would also require both the TRL and BLK main effects to also be included in the 
model. Consult Piepho et al. (2003) for further details on how to use these operators. 
Type of experiment Basic model 
Single location, single trial BLK + GEN 
Single location, several trials TRL/BLK + GEN = 

     TRL + TRL.BLK + GEN 
Several locations, single trial LOC/BLK + GEN +  LOC.GEN = 

     LOC + LOC.BLK + GEN + LOC.GEN 
Several location, several trials LOC/TRL/BLK + GEN + LOC.GEN = 

     LOC + LOC.TRL + LOC.TRL.BLK + GEN +  LOC.GEN 
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Table 3: Ttwo levels of blocking (REP = replicate and BLK = block within REP) per trial 
(TRL) and location (LOC). See the caption to Table 2 for explanation of the meanings of the 
operators used in this table. 
Type of experiment Base model 
Single location, single trial REP/BLK + GEN = 

     REP + REP.BLK + GEN 

Single location, several trials TRL/REP/BLK + GEN = 
     TRL + TRL.REP + TRL.REP.BLK + GEN 

Several locations, single trial LOC/REP/BLK + GEN +  LOC.GEN = 
     LOC + LOC.REP+ LOC.REP.BLK + GEN + LOC.GEN 

Several location, several trials LOC/TRL/REP/BLK + GEN + LOC.GEN = 
     LOC + LOC.TRL + LOC.TRL.REP + LOC.TRL.REP.BLK + GEN +  LOC.GEN 

 

2.4 Replicated designs 

2.4.1 Randomized complete block design 
This is the most widely used design in agricultural experiments. In this design 
plots (experimental units) with similar characteristics are arranaged together into 
groups or blocks. Genotypes are assigned to the plots within blocks such that each 
genotpe occurs the same number of times, typically only once, within each block. 
Equivalently, each genotype is replicated the same number of times in each block. 
A key aim of this design is to minimize the variation among plots within blocks and 
maximize the variation among blocks. Achieving this goal requires not only grouping 
similar plots to form blocks but also applying the same techniques to all the plots 
within a block over the course of the experiement. If required, variation of techniques 
or experimental conditions likely to alter the experimental outcome is often only made 
between blocks. A variety of criteria are used to group plots into blocks, including 
forming a block from a square compact group of adjacent plots. This design can be 
used to control for a gradient in one direction. Statistical analysis of data from a 
randomized complete block design is rather simple and hence has been omitted. For a 
large number of genotypes, complete blocking is well known to be utterly inefficient.  
Hence most breeders will use some form of incomplete blocking rather than a 
randomized complete block design. 
 

Block 1 Block 2 Block 3 Block 4 
5 4 2 6 
4 5 6 1 
6 6 4 4 
2 3 3 2 
1 2 1 3 
3 1 5 5 

 
Figure 2. Schematic illustation of a randomised complete block design with four 
blocks, each of which has six varieties (or genotypes). Each of the six varieties is 
assigned to one plot. 
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2.4.2 Alpha-design 
An alpha-design is an incomplete block design, in which the blocks can be grouped into 
complete replicates. Such designs, which encompass small, incomplete blocks within each 
complete replicate are said to be “resolvable”. John and Williams (1995) provide an example 
of an alpha design based on results from a yield trial involving oats. The example features a 
trial with 24 genotypes, three complete replicates and six incomplete blocks nested within 
each replicate. Each block has a size of four, that is, contains four plots. 
 
The layout of their example alpha design is as follows (Fig. 3): 
 

Replicate 1  Replicate 2 Replicate 3 

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6  Block 1 Block 2 Block 3 Block 4 Block 5 Block 6  Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

11 21 23 13 17 6  8 24 12 5 2 19 11 2 17 12 21 3 
4 10 14 3 15 12  20 15 11 9 18 7 1 15 18 13 22 5 
5 20 16 19 7 24  14 3 21 10 13 6 14 9 4 10 16 20 
22 2 18 8 1 9  4 23 17 1 22 16 19 8 6 23 24 7 

 
Figure 3. A sample layout of the alpha design of 24 genotypes reported in John and Williams 
(1995). 
 
An appropriate model for this design must have an effect for the complete replicates, and 
another effect for the incomplete blocks, nested within replicates. 
 
Such a model can be specified as 
 

ijhijhjijh eby            (1) 

 
where 

ijhy  = yield of the i-th genotype in the h-th block nested within the j-th complete replicate 

   = general effect or mean 

j  = effect of the j-th complete replicate 

jhb   = effect of the h-th block nested within the j-th complete replicate 

i  = effect of the i-th genotype 

ijhe  = residual plot error associated with ijhy . 

 

2.4.2.1 Example SAS code 1 
This example uses yield data from a trial involving oats based on the alpha design reported in 
John and Williams (1995). The SAS code below reads these data into SAS and fits model 1 in 
SAS Proc Mixed. SAS creates a data file called alpha (line 1) with four variables (2) and 
reads in the following 72 observations (3). The symbol @@ in (2) instructs SAS to continue 
reading until it reaches the end of a line before moving to the next line. The Proc mixed 
statement invokes the Mixed procedure (4) and directs it to use the data file called alpha (4). 
The class statement declares replicates, blocks and genotypes as categorical variables (5). The 
model statement instructs Proc Mixed to fit model 1 (6). The expression rep*block in line (6) 
does not specify an interaction between replicates and blocks as such, rather it enables SAS to 
construct unique identifiers for blocks nested within replicates. Hence, this expression can be 
substituted with a single variable that uniquely identifies all the blocks used in the trials. The 
lsmeans statement instructs Proc Mixed to compute the adjusted means for each of the 72 
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genotypes (7) and to use the SAS output delivery system (ods) to output the adjusted means 
into a file called lsmeans_gen (8) which can be found in the SAS work library. The run 
statement tells Proc mixed that all the instructions required to execute the analysis have been 
provided and instructs it to execute the requested analysis (9). The example can be copied, 
pasted and run in SAS. It is worth noting that when any of the variables contains characters 
and not numbers then its name should be followed by the dollar sign (e.g. block2 $, if block2 
is variable containing character strings).  
 
*1*;  data alpha;                                   
*2*;  input rep   block     gen     y @@;          
*3*;  datalines;                                   
  
 1       1       11    4.1172    1      1        4    4.4461   1       1        5    5.8757 
 1       1       22    4.5784    1      2       21    4.6540   1       2       10    4.1736 
 1       2       20    4.0141    1      2        2    4.3350   1       3       23    4.2323 
 1       3       14    4.7572    1      3       16    4.4906   1       3       18    3.9737 
 1       4       13    4.2530    1      4        3    3.3420   1       4       19    4.7269 
 1       4        8    4.9989    1      5       17    4.7876   1       5       15    5.0902 
 1       5        7    4.1505    1      5        1    5.1202   1       6        6    4.7085 
 1       6       12    5.2560    1      6       24    4.9577   1       6        9    3.3986 
 2       1        8    3.9926    2      1       20    3.6056   2       1       14    4.5294 
 2       1        4    4.3599    2      2       24    3.9039   2       2       15    4.9114 
 2       2        3    3.7999    2      2       23    4.3042   2       3       12    5.3127 
 2       3       11    5.1163    2      3       21    5.3802   2       3       17    5.0744 
 2       4        5    5.1202    2      4        9    4.2955   2       4       10    4.9057 
 2       4        1    5.7161    2      5        2    5.1566   2       5       18    5.0988 
 2       5       13    5.4840    2      5       22    5.0969   2       6       19    5.3148 
 2       6        7    4.6297    2      6        6    5.1751   2       6       16    5.3024 
 3       1       11    3.9205    3      1        1    4.6512   3       1       14    4.3887 
 3       1       19    4.5552    3      2        2    4.0510   3       2       15    4.6783 
 3       2        9    3.1407    3      2        8    3.9821   3       3       17    4.3234 
 3       3       18    4.2486    3      3        4    4.3960   3       3        6    4.2474 
 3       4       12    4.1746    3      4       13    4.7512   3       4       10    4.0875 
 3       4       23    3.8721    3      5       21    4.4130   3       5       22    4.2397 
 3       5       16    4.3852    3      5       24    3.5655   3       6        3    2.8873 
 3       6        5    4.1972    3      6       20    3.7349   3       6        7    3.6096 
; 
run;   
 
*4*;  proc mixed data=alpha;               
*5*;  class rep block gen;                 
*6*;  model y=rep rep*block gen;           
*7*;  lsmeans gen;    
*8*;  ods output lsmeans=lsmeans_gen;      
*9*;  run;                                 

 
Using the input statement as indicated in example SAS code 1 is a convenient means for 
reading small data sets directly into SAS but can be both tedious and time-consuming for 
relatively large data sets likely to be encountered in practice. For such data sets it is more 
convenient and efficient to use the SAS import wizard or the SAS import procedure described 
in more detail in § 11.1 in the Appendix.  
 

2.4.2.2 Example R-Asreml code 1 
An equivalent analysis to that done in SAS above can be carried out in R-Asreml by 
submitting the following call to the Asreml package, within the R software environment: 
 
alpha <- data.frame(  
 
rep=factor(c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)), 
 
block=factor(c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,1,1,1,1,
2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6)), 
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gen=factor(c(11,4,5,22,21,10,20,2,23,14,16,18,13,3,19,8,17,15,7,1,6,12,24,9,8,20,14,4,24,15,3,23,12,11,21,17,5,
9,10,1,2,18,13,22,19,7,6,16,11,1,14,19,2,15,9,8,17,18,4,6,12,13,10,23,21,22,16,24,3,5,20,7)) 
 
y=c(4.1172,4.4461,5.8757,4.5784,4.654,4.1736,4.0141,4.335,4.2323,4.7572,4.4906,3.9737,4.253,3.342,4.7269,4
.9989,4.7876,5.0902,4.1505,5.1202,4.7085,5.256,4.9577,3.3986,3.9926,3.6056,4.5294,4.3599,3.9039,4.914,3.79
99,4.3042,5.3127,5.1163,5.3802,5.0744,5.1202,4.2955,4.9057,5.7161,5.1566,5.0988,5.484,5.0969,5.3148,4.629
7,5.1751,5.3024,3.9205,4.6512,4.3887,4.5552,4.051,4.6783,3.1407,3.9821,4.3234,4.2486,4.396,4.2474,4.1746,4
.7512,4.0875,3.8721,4.413,4.2397,4.3852,3.5655,2.8873,4.1972,3.7349,3.6096) 
 ) 

 
alpha.asr <- asreml( 

fixed=y ~ gen + rep + rep:block ,  
data = alpha) 

 
For routine applications, it is more convenient and quicker to import data sets into R from 
foreign formats, such as excel, as explained in § 11.2 in the Appendix .  
 

2.4.3 Lattice design 
Lattice designs (Fig. 4) are an important class of incomplete block designs for plant breeders. 
These designs share with the alpha design the common property that randomization and 
analyses are done in exactly the same way! These designs have the following two key 
properties. The number of entries must be an exact square. The square root of the number of 
entries equals (1) the number of blocks and (2) the number of plots in each block. Several 
incomplete blocks are grouped together to form separate complete replications. Lattice 
designs are either balanced or partially balanced depending on the number of replications they 
require. In balanced lattices all entries occur in the same block an equal number of times. In 
partially balanced lattices not all entries occur together in the same block.  
 

Replicate 1  Replicate 2 
Block 1 Block 2 Block 3  Block 1 Block 2 Block 3 

C1 3 C2  C1 2 6 
2 C3 4  3 C3 1 
6 1 5  C2 4 5 

 
Replicate 3  Replicate 4 

Block 1 Block 2 Block 3  Block 1 Block 2 Block 3 
C1 C2 3  C1 3 C2 
C3 2 4  4 2 C3 
5 1 6  1 5 6 

 
Figure 4. Example layout of a lattice design with 4 replicates, 9 entries and a block size of 3. 
Six entries (1-6) and three checks (C1-C3) were used. 
 
It is noteworthy that replicated trials laid out as lattices or augmented alpha designs are often 
conducted side by side in the same location and need to be analyzed jointly. The alpha and 
lattice designs are routinely connected by common checks. Joint analysis requires a further 
blocking factor up the hierarchy: trial / rep / block / plot (Table 3).  
 

2.5 Unreplicated / Partially replicated designs 
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2.5.1 Augmented design 
An augmented design uses replicated checks (standard varieties) but unreplicated entries. A 
complete block design is built for the checks and blocks are augmented with entries. Thus, the 
blocks are incomplete with respect to the entries. In the example below (Fig. 5) C1-C3 are the 
checks and 1-30 are the entries. Overall, 6 incomplete blocks each with a block size of 8 
(plots) are used. 
 
 

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 
C1 30 C3 23 02 C1 
14 C3 18 09 C2 29 
26 04 27 06 21 07 
C3 15 C1 C3 C1 C3 
17 C1 25 C2 C3 01 
C2 03 28 20 10 C2 
22 C2 05 11 08 12 
13 24 C2 C1 16 19 

 
Figure 5. An example of the augmented design. 
 
 
A suitable model for this design must have effects for incomplete blocks. The model is 
 

ijijij eby             (2) 

 
where 

ijy  = yield of the i-th genotype in the j-th block  

   = general effect 

jb   = effect of the j-th block  

i  = effect of the i-th genotype 

ije  = residual plot error associated with ijy  

 

2.5.1.1 Example SAS code 2 
 
 

proc mixed data=augmented  lognote ;  
class  block gen ;  
model y=  block gen; 
lsmeans gen; 
ods output lsmeans=lsmeans; 
run; 

 

2.5.1.2  Example R-Asreml code 2 
asr_Augmented <- asreml( 

fixed=y ~ gen + block,  
data=Augmented) 
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2.5.2 Augmented p-rep design 
The p-rep design (Fig. 6) is similar to the augmented design except that the checks are 
replaced with partially replicated entries. These designs are particularly useful when trials are 
repeated across locations. When there are l locations, one can replicate 1/l-th of the entries at 
each location (i.e., p = 1/l) such that each entry is tested with two replicates in one of the l 
locations. 
 
One option for the p-rep design is to build an alpha-design with the replicated entries and then 
augment the blocks with the unreplicated entries, resulting in one variant of p-rep design 
called augmented p-rep design by Williams, Piepho and Whitaker (2011). In the example 
location shown in Fig. 5 below, entries 1-9 (shown in bold face) are replicated whereas entries 
10-39 are not. 
 

Replicate 1  Replicate 2 
Block 1 Block 2 Block 3  Block 1 Block 2 Block 3 

1 15 4  13 34 5 
23 9 32  37 9 27 
36 30 28  14 10 31 
8 39 6  8 7 1 

24 5 12  2 6 38 
7 21 33  16 11 3 

29 2 25  18 20 17 
35 22 3  4 26 19 

 
Figure 6. An illustrative layout of the augmented p-rep design. 
 
A suitable model for the p-rep design is identical to that for the alpha-design, meaning that the 
analysis of data from a p-rep design proceeds similarly to that for data from an alpha design. 
The model is: 
 

ijhijhjijh eby                                  (3) 

 
where 

ijhy  = yield of the i-th genotype in the h-th block nested within the j-th complete replicate 

   = general effect 

j  = effect of the j-th complete replicate 

jhb   = effect of the h-th block nested within the j-th complete replicate 

i  = effect of the i-th genotype 

ijhe  = residual plot error associated with ijhy . 

 
 

3 When should genotype, block or location effect be taken 
as fixed or random? 

Depending on the nature and objective of particular statistical analyses, genotypes, locations 
or blocks can be treated as either fixed or random factors in a statistical model for phenotypic 
analysis. Making this decision correctly in practice can sometimes be non-trivial and quite 
challenging yet the decision arrived at can have important consequences for data analysis and 
its outcome. Here we take a brief look at some of the key considerations that phenotypic data 
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analysts should make in deciding whether to treat any of these three factors as either fixed or 
random in an analysis.   

3.1 Genotypes 
Genotypes (commonly called entries) can be treated either as fixed or random effects in 
statistical analysis of plant breeding trial data depending on the goal of analysis. If the goal is 
to obtain adjusted entry means in a phenotypic analysis, then it suffices to take entries as fixed 
effects and estimate their adjusted means. If the goal of analysis is to model the variance-
covariance matrix of genotypic effects then it is more appropriate to treat the entries as 
random effects in a phenotypic analysis of plant breeding data. But, if performing genomic 
selection is the overarching goal of an analysis then entries should be treated as fixed effects 
in the first stage, and then as random effects in the second stage of a two-stage analysis. In the 
first stage, the phenotypic analysis stage, the entries are treated as fixed effects and their 
adjusted means obtained. Once the adjusted entry means are available from the first stage they 
are treated as the response variable in the second stage (genome-wide analysis stage) in which 
the entries themselves are treated as random effects. The use of such prediction methods as 
the widely used Best Linear Unbiased Prediction (BLUPs) to estimate the genomic breeding 
values of the entries (see e.g., Piepho et al. Submitted) is anchored on the specification of 
entries as random in the second stage of a two-stage analysis, which will yield BLUPs of 
genotypic values of entries. Thus, genomic selection can be usefully viewed as a stage-wise 
approach, in which the first stage corresponds to the phenotypic analysis and the second stage 
to genomic selection.  
 
In analysis of animal breeding data, which often lack phenotypic observations on individual 
entries, in contrast, the numerator relationship matrix is routinely used to model genetic 
relationship among the entries. To obtain estimated breeding values (EBVs) for entries, the 
entries are specified as random effects. The EBVs are de-regressed and submitted to 
subsequent steps of step-wise genomic selection. This approach is not recommended for plant 
breeding data for which direct and replicated phenotypic information on all individual entries 
is usually available. 
 

3.2 Blocks 
The specification of blocks as fixed or random effects in a model determines the type of 
information that can be extracted from the model and can partly be decided by whether blocks 
are randomized in a breeding trial or, alternatively, by the number of blocks used in a trial. 
Thus, if blocks are specified as random then both intra-block and inter-block information can 
be extracted. But if blocks are used only as fixed effects then only the intra-block information 
can be acquired. If blocks are randomized then the factor block can be treated as a random 
effect. Since a large number of blocks are often needed to reliably estimate block variance, the 
estimate of block variance may not be reliable if only a few blocks are available. Often, 
however, using blocks as either fixed or random effects yields fairly similar results (Piepho et 
al., 2003), meaning that data analysts are free to decide which specification to use with their 
data. 
 

3.3 Locations 
As with blocks, the same consideration should be made when deciding whether to specify 
location as a fixed or random effect in a model. Location should be treated as a random factor, 
if the locations used in a trial are regarded as a random sample from a target population of 
environments. This view is in agreement with most plant breeding programs, where the 
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primary objective is not to breed for one specific location, but for a target population of 
locations / environments. One advantage of using location as a random factor is that the inter-
location information can be gained. Despite this, there are instances when too few locations 
are available. This often renders the estimation of the location variance unreliable. Also, it 
may lead to a minor expected increase in information from using location as a random effect, 
or, worse still, the expected information gain may fail to materialize at all. In some instances, 
furthermore, using too few locations as random effects may be counterproductive and may 
actually increase rather than reduce the variance of the difference between entries, contrary to 
expectation.  
 
Even though location or environment main effect can be treated as random factors (effects) 
due to random sampling of a subset of locations from a large population of possible locations, 
location main effect is sometimes treated as a fixed effect, in particular when breeders target a 
specific population of location or environments. In practice, location main effect is almost 
always taken as a random effect. Generally when a factor, such as location main effect is 
random, then conventionally, all other effects that contain that factor, are also taken as 
random. Hence, for example, when location is taken as a random factor, then all the 
interactions between location and other factors, such as the location  genotype effect, and all 
effects nested within location, such as replicates and blocks, also become random effects in 
the model. If statistical analysis involves at least two-stages, then location is almost never 
specified as a fixed factor in phenotypic data analysis. It is thus always useful to make a clear 
distinction between the two different but closely interrelated roles that location can play in 
models for phenotypic data in plant breeding viz: (i) the location main effect and (ii) the 
genotype-location interaction. The latter should be taken as random always, while for the 
former there is also the option to formally take it as fixed, as already mentioned above and 
detailed below (§ 4.1). While there is usually a choice to treat the location main effect as fixed 
or random, depending on whether or not there is interest in exploiting the between-location 
information, the genotype-location interaction should always be treated as a random effect, 
whenever the ultimate goal is to estimate genotype means across locations. 
 

4 Series of experiments 

4.1 Basic model 
Entries are normally tested in several different locations giving rise to series of experiments. 
In each location an experimental design, such as one of the designs described above (§ 2.4.1 
to 2.5.2), is used. The use of multiple locations enables the analysis to be expanded to cover 
all the target population of locations. This is achieved by adding a location main effect to the 
basic model for a single location. Additionally, if it is significant, an interaction term between 
genotypes and locations should be included. However, it is almost always prudent to include 
the genotype-location interaction term in the model because it is very rare for this interaction 
to be insignificant in practice. Otherwise, breeders would not be replicating trials in multiple 
environments. The main reason for such multiple-location testing is that breeders know, from 
accumulated experience, that genotype-environment interaction is often substantial. 
  
An example model for an alpha-design pertaining to multiple locations is as follows: 
 

ijhkikikjhkjkijhk eby  )(        (4) 

 
where 
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ijhky  = yield of the i-th genotype in the h-th block nested within the j-th complete replicate  

   in the k-th location 
   = general effect 

kj  = effect of the j-th complete replicate in the k-th location 

kjhb   = effect of the h-th block within the j-th complete replicate in the k-th location  

i  = effect of the i-th genotype 

k  = effect of the k-th location 

ik)(  = interaction between the i-th genotype and the k-th location 

ijhke  = residual plot error associated with ijky  

 
It is worth reiterating at this point that if the location factor is treated as random, then 
conventionally all effects associated with location are also regarded as random. For example, 
in model 4 above the location main effect, the genotype × location interaction effect, and the 
block effect that is nested within locations would all be treated as random effects. One can 
thus make the following distributional assumptions concerning the effects of blocks, 
locations, their interactions and residual error for model 4: 
 

 2,0~ bjk Nb   

 2,0~  Nk  

 2,0~)(  Nik  

 2,0~ eijk Ne   

4.1.1 Example SAS code 3 
This example SAS code fits data from different locations using an alpha design in each 
location. The SAS mixed procedure is invoked and instructed to use the dataset called alpha 
located in the work library or directory (1). The class statement lists replicate, block, genotype 
and location as classification (i.e. categorical) variables (2). The model statement specifies 
that the model y = general mean +fixed effect of genotype be fit to the data (3). The random 
statement lists the intercept, replicate, blocks nested within replicates and genotypes as 
random effects and location as the subject (4). This is equivalent to fitting location, 
location*replicate, location*block*replicate and genotype*location as random effects. The 
adjusted means for each genotype are requested by the lsmeans statement (5) and are output 
into a file called lsmeans_gen located in the work library (6) after proc mixed executes the 
submitted commands on reaching the run statement (7).   
 
*1*; proc mixed data=alpha; 
*2*; class rep block gen loc; 
*3*; model y= gen; 
*4*; random int rep block*rep gen/sub=loc; 
*5*; lsmeans gen; 
*6*; ods output lsmeans=lsmeans_gen; 
*7*; run; 

 
 

4.1.2 Example R-Asreml code 3 
The preceding analysis can also be performed in R-Asreml using the following code. The 
operator : between two factors e.g. loc:rep means that the factors location and replicates are 
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crossed. A crossed effect is not the same as an interaction term. It is only equivalent to an 
interaction term (e.g. loc*rep) if both loc and rep main effects are also contained in the model. 
 
asr <- asreml( 

fixed=y ~ gen,  
random=~loc + loc:rep + loc:rep:block + loc:gen ,  
data = alpha) 

 

4.2 Heterogeneity of variance among locations 
Oftentimes, differences in precision between locations are quite pronounced in practice, and 
thus need to be explicitly accounted for. If variance heterogeneity exists, then some gain in 
efficiency may, be made by accounting for it. This can be done in several ways. Nonetheless, 
it is sometimes justified to assume homogeneity of variance among locations. For example, 
model 4 implies homogeneity of variances among locations. While this may seem too strong 
an assumption, it can be justified by randomization theory (Calinski et al., 2005).  
 
One way to allow for heterogeneity in variances among locations (1 to k) using model 4 is to  
extend it to allow each of the k locations to have a different error variance as follows: 
 

 2,0~
keijk Ne  , 

 

4.2.1 Example SAS code 4  
This code is identical to that in example 3 above except for the addition of the repeated 
statement in line 5 that instructs Mixed to fit a separate residual variance for each location 
through the group=location option. 
 
*1*; proc mixed data=alpha; 
*2*; class rep block gen loc; 
*3*; model y= gen; 
*4*; random int rep block*rep gen/sub=loc; 
*5*; repeated /group=loc; 
*6*; lsmeans gen; 
*7*; ods output lsmeans=lsmeans_gen; 
*8*; run; 

 

4.2.2 Example R-Asreml code 4 
The heterogeneous location error variance can also be fitted in R-Asreml using the code 
below. An important new feature in this code is the rcov formula used to specify the variance-
covariance structure of the residuals (e) through the at() function for declaring conditional 
factors. A conditional factor is a factor that is present only at a particular level of another 
factor. As an illustration, consider a multi-environment trial conducted at two sites using a 
randomised complete block design in each site. When analyzing these data, one could 
estimate separate block variance components for each Site by including the random term 
at(Site):block in the model specification. In this example, Site (= location) is the conditioning 
factor and separate variance components for block are obtained at each of the two levels of 
Site (i.e. trial sites or locations). If no levels of the conditioning factor (Site in this example) 
are specified in the at() function, then a complete set of the conditioning levels is generated. 
In the present example the at(Site):Block function expands to at(Site,1):Block + at(Site, 
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2):Block. This is the same as fitting a diagonal variance-covariance model using the function 
diag(Site):Block. More generally, if the vector (l) containing the levels of the conditioning 
factor (f) is specified as a numeric vector then it refers to the levels of f in the order returned 
by levels (f). When used in an rcov formula as done here, at() specifies a variance-covariance 
model for the residuals (e) as a direct sum of l variance matrices, one for each level of the 
conditioning factor. Units refer to the plots on which the yield measurements are made. 
 
asr <- asreml( 

fixed=y ~ gen,  
random=~loc+loc:rep+loc:rep:block+loc:gen , 
rcov = ~ at(loc):units,  
data = alpha) 

5 Genotype  Environment interaction (to be extended) 
Genotype by environment interaction is a fairly common phenomenon in plant breeding trials. 
Such interactions need to be explicitly accounted for in statistical models for phenotypic 
analysis of plant breeding data. Several options exist for modelling G  E interaction, such as 
that in model 4 above, as extended in § 4.2. As an illustrative example, we focus here on the 
genotype  location part of the following model,  
 
ij =  + i + j + ()ij ,         (5) 
 
where ij is the conditional expectation of the i-th genotype in the j-th location. In model 4 we 
assumed: 
 

 2,0~  Nj  

   2,0~  Nij  

 
These assumptions imply a relatively simple variance-covariance structure for ij, known as 
"compound symmetry", equivalent to assuming a constant correlation between all pairs of 
genotypes: 
 

  22var   ij  

  2,cov  jiij  

 
In the terminology of repeated measures experiments, the locations in a series of trials can be 
viewed as subjects on which repeated measurements are taken and genotypes as the time 
points at which the measurements are made. Viewed in this way, the compound-symmetric 
variance-covariance matrix for 4 cultivars may thus be representation by the matrix: 
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The whole variance-covariance matrix has a block diagonal structure. For example, for 4 
genotypes and 2 locations we have the following matrix representation: 
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6 Single- vs. Two-stage analysis   
Phenotypic analysis can be carried out in either one or two stages each of which has it merits 
and demerits. For example, a single-stage analysis, though often desirable may sometimes be 
computationally too demanding. Thus, it is often interesting and useful to proceed in two 
stages instead. In the first step, adjusted means are computed for each cultivar in each location 
based on a model such as:  
 

ijhijhjijh eby            (6) 

 
where 

ijhy  = yield of the i-th genotype in the h-th block nested within the j-th complete replicate 

   = general effect 

j  = effect of the j-th complete replicate 

jhb   = effect of the h-th block nested within the j-th complete replicate 

i  = effect of the i-th genotype 

ijhe  = residual plot error associated with ijhy  

 
 
These means are then subjected to further analysis by a two-way model. An example two-way 
model is: 
 

ikikkiik ey  )(ˆ              (7) 

 
where 

ikŷ  = adjusted means of the i-th genotype in the k-th location 

   = general effect 

i  = effect of the i-th genotype 
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k  = effect of the k-th location 

ik)(  = interaction between the i-th genotype and the k-th location 

ike  = adjusted error of the genotype-location mean associated with iky  

 
 

In the first step we may compute the variance of a mean ( ikŷ ) and use these to model errors eij 

in stage two. In stage two, block effects are then implicitly accounted for as random effects, 
because block means per location are confounded with location main effects.  
 

6.1 Example SAS code 5  
Since parts of sample codes 1 to 3 also reappear in this code, we only highlight those parts of 
the code not covered in the previous examples. The single stage analysis is done in only one 
step. The lognote option (1) in the single stage analysis prompts proc mixed to write periodic 
notes to the log window describing the current status of what it is computing. This is useful 
because computations for the single stage analysis can require extensive computing resources. 
The parms statement (5) supplies initial values for the four covariance parameters estimated 
by the mixed model, comprising the location, rep*location, block*rep*location and 
genotype*location random effects. The estimated covariance parameters are saved in a file 
called cp_single_stage in the work library (7).  
 
In the first stage of the two-stage analysis, adjusted means for each genotype are computed 
separately for each location using the by location processing statement (2) and saved in a file 
known as lsmeans in the work library (7). These lsmeans can then be read (11) into a new file 
(10) from which the variances of the lsmeans can be extracted (13). The reciprocal of the 
variance of each lsmean (14) can then be used as its weight in the second stage. The lsmeans 
are renamed as yield and used as a response variable in the second stage of the analysis (12).   
 
In the second stage, the adjusted mean yield for each genotype over all locations is computed 
(3), with location and genotype*location as the random effects (4). The parms statement 
supplies initial values for the location and genotype*location random effect and holds the 
value of the residual error fixed at 1 using the hold=3 option on the parms statement. Fixing 
the residual variance at 1 ensures that SAS does not use it to modify the weight assigned to 
the adjusted mean for each genotype passed on to proc mixed by the weight statement (6).  
  
/*---Single-stage Analysis ---------------------*/ 
*1*; proc mixed data=a lognote; 
*2*; class gen loc rep block; 
*3*; model y=gen; 
*4*; random int rep block*rep gen/sub=loc; 
*5*; parms (1)(1)(1)(1)(1); 
*6*; lsmeans gen; 
*7*; ods output lsmeans=lsmeans_single_stage covparms=cp_single_stage; 
*8*; run; 
 
/*---Two-Stage Analysis--------------------------*/ 
 
/*---First stage----------*/ 
*1*; proc mixed data=a lognote; 
*2*; by loc; 
*3*; class gen rep block; 
*4*; model y=gen; 
*5*; random rep block*rep; 
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*6*; parms (1)(1); 
*7*; lsmeans gen; 
*8*; ods output lsmeans=lsmeans covparms=cp; 
*9*;  run; 
 
*10*; data lsmeans; 
*11*; set lsmeans; 
*12*; y=estimate; 
*13*; var_mean=stderr**2; 
*14*; w=1/var_mean; 
*15*; run; 
 
/*-----Second stage-----------*/ 
*1*; proc mixed data=lsmeans lognote; 
*2*; class gen loc; 
*3*; model y=gen; 
*4*; random int gen/sub=loc; 
*5*; parms (1)(1)(1)/hold=3; 
*6*; weight w; 
*7*; repeated ; 
*8*; lsmeans gen; 
*9*; ods output lsmeans=lsmeans2 covparms=cp2; 
*10*; run; 
 
The weighted method is explained only for SAS because R-Asreml is usually very fast and 
hence does not benefit much from a stage-wise analysis. 

7 Example phenotypic analysis for a lattice design with 
two replicates (KWS, Synbreed Project dataset) 

This example features the case of several lattice experiments (up to 10  10 lattices) 
conducted in six locations (Fig. 7). The dataset was generated for the Synbreed Project. The 
Synbreed dataset contains 1500 entries tested using a 10  10 lattice design with two 
replicates. All the trials were conducted at four of the six locations. All the 16 trials were 
conducted at two of the six locations but varying subsets of the trials were conducted at the 
other four locations. The trials employed 5 to 6 checks (commercial hybrids). Moreover, three 
different testers were used, but each genotype was tested against only one of the three testers.  
 

Replicate 1  Replicate 2 
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10  B11 B12 B13 B14 B15 B16 B17 B18 B19 B20

7 39 40 27 19 22 44 52 C2 C3  94 58 19 100 42 68 77 99 12 38 

26 10 49 38 29 13 23 34 C1 24  73 14 43 61 67 83 6 85 76 53 

46 C4 8 20 48 45 35 43 C5 51  64 89 9 29 25 C3 86 10 36 18 

36 50 28 9 37 33 55 14 54 32  47 46 35 72 C1 26 98 75 59 48 

17 18 16 47 6 53 15 25 12 42  84 3 65 33 2 93 13 45 24 62 

66 77 69 60 97 71 73 63 82 72  56 69 22 44 15 49 34 37 50 28 

88 100 86 78 68 2 95 74 75 85  C6 32 54 88 90 39 C5 55 81 92 

57 58 79 70 76 91 83 84 5 92  C4 78 87 20 57 60 23 27 4 74 

80 67 59 98 56 64 3 93 94 C6  17 C2 80 52 97 5 66 63 70 82 

99 87 96 90 89 81 62 4 61 65  40 91 96 8 79 71 51 16 95 7 

 
Figure 7. Layout of the lattice design used in each location for each trial/lattice 
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7.1 Example SAS code 6 
Due to the high number of observations, fitting a model to the complete phenotypic data is not 
feasible in SAS because SAS simply runs out of memory. Hence the data for only a subset of 
the locations can be analyzed using the proc mixed procedure of SAS. 
 
proc mixed data=test lognote; 
ods output lsmeans=lsmeans CovParms=covparms FitStatistics=fit; 
class gen loc trial rep block; 
model y=gen /ddfm=residual notest; 
random int trial trial*rep trial*rep*block gen/sub=loc;  
parms (1)(1)(1)(1)(1)(1);   
lsmeans gen; 
run; 
 

7.2 Example R-Asreml code 6 
The dataset can be analysed with R-Asreml using the following model: 
 
########--- Baseline model  
asr_a <- asreml(fixed=y ~ gen ,  
                random=~loc + loc:trial + loc:trial:rep +  
                        loc:trial:rep:block + loc:gen, 
                data = a) 
 
######--Model 1: Heterogeneous error variance among the locations 
asr_a_model1 <- asreml(fixed=y ~ gen,  
                   random=~loc + loc:trial + loc:trial:rep +  
                           loc:trial:rep:block + loc:gen, 
                   rcov = ~ at(loc):units, 
                   data = a) 
 
Information-theoretic model selection criteria such as AIC (a smaller AIC values indicates a 
better model) can be used to choose between the two contending error variance models.  

8 Example phenotypic analysis for an augmented design 
(AgReliant dataset) 

The other example dataset contains 177 un-replicated double haploid maize (Zea mays) lines 
each derived from a biparental cross (Fig. 8). The hybrid performance was tested with one 
common tester. The hybrids were tested using an augmented design. In each of 6 locations, 5 
incomplete blocks were used. The dataset was unbalanced so that not every hybrid was tested 
in each environment. Each incomplete block contained a single column of plots. The 
incomplete blocks in each environment were connected by two standard varieties (checks) in 
each incomplete block. The standard varieties were not replicated within the blocks. 
 

Block 1 Block 2 Block 3 Block 4 Block 5 
Check 1 Check 1 Check 1 Check 1 Check 1 
Check 2 Check 2 Check 2 Check 2 Check 2 
DHL 1 DHL 36 DHL 71 DHL 106 DHL 140 

. . . . . 

. . . . . 
DHL 35 DHL 70 DHL 105 DHL 140 DHL 177 
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Figure 8. Layout of the experimental design used in each location. The entries are shown here 

in alphabetical order for clarity but were randomized in the trials. 
                                                          
A suitable model for this design is: 
 

ihkikkikhihk eby  )(       (11) 

 
where 

ihky  = yield of the i-th genotype in the h-th block nested within the k-th location 

   = general effect 

khb   = effect of the h-th block within the k-th location  

i  = effect of the i-th genotype 

k  = effect of the k-th location 

ik)(  = interaction between the i-th genotype and the k-th location 

ihke  = residual plot error associated with ihky  

 
We note that modelling heterogeneous variances between the different environments is 
difficult due to lack of replicates within locations. Nevertheless, a heterogonous error variance 
for location appeared better supported by AIC for both datasets. 
 

8.1 Example SAS code 7  
Proc mixed invokes the mixed procedure and identifies a dataset called g located in the 
default work library (i.e., work.g) as the dataset to be analysed (1). Location, block and 
genotype are listed in the class statement as classification variables (2). The model statement 
fits the mean model: yield=intercept +fixed genotype effect (3). To accelerate computations, 
the denominator degrees of freedom (ddfm) is set to residual via the ddfm=residual option and 
tests for significance of fixed effects are suppressed through the notest option of the model 
statement (3). The random statement fits random effects for intercept, block and genotype and 
specifies location as the subject; which is the same as fitting random effects for location, 
location*block and location*genotype (4). The adjusted means for the genotypes is requested 
via the lsmeans statement (5) and estimates of the adjusted means are saved in a file called 
lsmeans in the work directory. In addition, fit statistics, including the Akaike Information 
Criterion, Schwarz Bayesian Information Criterion and the log likelihood of the fitted model 
are requested through the fitstatistics option of the SAS output delivery system and saved in a 
filed called fit in the work directory (6). The estimated covariance parameters are also saved 
in a file called cp in the work library (6). The parms statement (7) instructs proc mixed to set 
the initial value for each of the four covariance parameters (viz, the three random effects—
location, location*block and location*genotype—and one residual error term) to 1 (6). The 
numerical values listed in the parms statement must appear in the same order as the 
covariance parameters in the model.      
 
This model can be extended by the addition of the repeated statement in line 9, which fits a 
separate residual error variance for each location as dictated by the group=location option.   
 
/*--------- Homogeneous location error variance model--------*/ 
 
*1*; proc mixed data=g;  
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*2*; class loc block gen;  
*3*; model y= gen /ddfm=residual notest; 
*4*; random int block gen /sub=loc; 
*5*; lsmeans gen; 
*6*; ods output lsmeans=lsmeans FitStatistics=fit covparms=cp; 
*7*; parms(1)(1)(1)(1); 
*8*; run; 
 
/*--------- Heterogeneous location error variance model--------*/ 
   proc mixed data=g;  
     class loc block gen;  
   model y= gen /ddfm=residual notest; 
   random int block gen/sub=loc; 
*9*; repeated /group=loc; 
   lsmeans gen; 
   ods output lsmeans=lsmeans FitStatistics=fit covparms=cp; 
   parms(1)(1)(1)(1); 
   run; 

 

8.2 Example R-Asreml code 7 
 
#--------- Homogeneous location error variance model-------- 
 
asr <- asreml( 
fixed= y ~ gen,  
random=~ loc + loc:block + loc: gen,  
data = g) 
 
#--------- Heterogeneous location error variance model-------- 
asr <- asreml( 

fixed= y ~ gen, 
random=~ loc + loc:block + loc: gen, 
rcov = ~ at(loc):units,  
data = g) 

 

9 Genomic selection (still to be written) 
Section to be completed when the marker data for the KWS Synbreed data becomes available. 
Examples: 
-Ridge regression BLUP 
-Machine learning 
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11 Appendix 

11.1  Importing data into SAS using the SAS import wizard 
Using the input statement as indicated in the example SAS code 1 above is a convenient 
means for reading small data sets directly into SAS but can be both tedious and time-
consuming for relatively large data sets likely to be encountered in practice. For such data sets 
it is more convenient and efficient to use the SAS import wizard or the SAS import 
procedure. The SAS import wizard allows you to import a data set saved in other formats not 
native to SAS, such as excel format. Suppose you want to import an excel data file called 
maize_yield saved at “D:\Maize\yield\data\maize_yield.xls” into SAS work directory (called 
library) and save it as a SAS file called yield. Suppose further that the excel sheet in this file 
that you want to import is called Sheet1. You can do this by following the steps below, where 
the horizontal arrows are used to indicate what follows or what you should expect to see 
displayed on the screen after the execution of each step is completed.  
  
From the SAS program editor window click once on “File” in the upper left cornerscroll 
down to “import data” and click once  What type of data do you wish to import? Select a 
data source from the list belowMs excel workbook Click NextConnect to Ms excel 
workbook  browse to the file you want to import and click on the file once to select it  
(e.g. D:\Maize\yield\data\maize_yield.xls)Click OKWhat table do you want to import? 
(i.e. Scroll down the list and select the excel sheet you want to import from the list, e.g. 
Sheet1 in this example. Note that SAS will import only one excel sheet at a time) Choose 
the SAS destination (i.e. Choose the SAS directory or library in which to save the imported 
datawork (The default SAS library called work can be used) member (i.e. provide a SAS 
name for the imported file, e.g. yield in this example) Finish.  
 
Instead of clicking finish you may opt to click next instead for the SAS import wizard to 
automatically create for you a file containing the SAS import procedure statements. As the 
next and final step you can browse to the location where you would want SAS to save the 
generated import statements, provide a name for the program file and click finish. You can 
open and use the saved SAS program statements by double clicking on the file name from 
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windows explorer or from within the SAS program editor to import the data from excel 
without having to use the SAS import wizard. The saved SAS import procedure program for 
our example will be:  
 
PROC IMPORT OUT= WORK.yield  
            DATAFILE= ". D:\Maize\yield\data\maize_yield.xls "  
            DBMS=EXCEL REPLACE; 
     RANGE="Sheet1";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
 
It is important to emphasize that the SAS work directory is only a temporary directory and all 
the data files held in it are lost at the end of each SAS session. To save the imported data set 
permanently in SAS format you can save it either in the SAS USER library or in any other 
permanent directory. Using the libname statement of SAS is one convenient way of doing 
this. For example to permanently save the file work.yield in a directory called yieldata outside 
SAS, you can use these two statements:  
 
libname yielddata “D:\Maize\yield\data\”;  
Data yielddata.yield; set yield; run;  
 
As with the import wizard, the SAS export procedure wizard can be used to export data from 
SAS to other foreign format destinations, such as excel, dbf, text files, etc.  
 

11.2  Importing data into R  
Assume we want to import data into R. We illustrate here how to import data saved in a tab 
delimited text file format. To import a data set called alpha.txt saved in a folder with a 
location path D:\Maize\yield\data, we first specify the location path of the folder and then 
read the data into R as follows:  
 
setwd("D:/Maize/yield/data ") 
a<- read.delim (file=" alpha.txt", header=TRUE, sep=" ") 
 
Data saved in other foreign formats can be similarly imported into R by looking up and 
following the appropriate R import commands. 
 

11.3  Datasets  
The example datasets for alpha, lattice and augmented are provided in tab delimited text files 
called alpha.txt, lattice.txt and augmented.txt, respectively. The Synbreed dataset is provided 
in a tab delimited text file called Synbreed.txt whereas the AgReliant dataset in a text file 
called AgReliant.txt. 
 
 
 


