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SUMMARY

The generalised growth function developed by RICHARDS
(1959) has been found most suitable for the model construc-
tion of site index curve system. The existing methods of
construction of site index curves, which constitute the
most important part of the Normal Yield Tables, are pro-
posed to be replaced by the model. BRICKELL (1968), LUND-
GREN & DOLID (1970), BECK (1971), HAGGLUND (1972) and
RAWAT (1973) have successfully used the function for con-
struction of site index curves with sufficient data from
different sources. The methodology, however, seems diffe-
rent from author to author. Standard method of STEVENS
(1951) for asymptotic regression seems to be most appro-
priate for construction of the model. HIORNS (1965) claims
so already. He, however, does not mention the name of
MARQUARDT (1963) therein. We feel that Marquardt's method
is also suitable for any non-linear asymptotic function,
also for the generalised growth function of Richards, but
since a specific methodology has been developed by Stevens
for Richards's growth function, the latter should be pre-
ferred. The biologists (foresters) can easily grasp the
procedure.

The model is equally suitable for all other growth
and yield studies, e.g. diameter/age, basal area%age, total
volume/age and number of stems per unit area/age relation-
ships. TURNBULL & PIENAAR (1965? constructed a model, also
based on the growth function of Richards, to define the
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expected trend of growth for stands of different stocking
levels taking basal area per acre over age as mathematical
basis. There is no doubt that Lasal area is the simplest
and most widely accepted measure of stocking density, but
it should be expressed mathematically, if required, cor-
rectly and sufficiently. We have found that stand basal area
per acre/age curves are not asymptotic in all the cases.
These growth curves bend downwards after reaching the
maximum value for stands of some of the species like Pine
(Pinus silvestris,L.). Probably it is because of the fact
that the site is not capable of supporting optimum number
of stems at higher ages. The subject as such pertains to
thinning research and detailed investigations and analyses
are necessary in this direction. We have, however, analysed
some data and found that stand basal area of mean tree/age
and the number of stems per unit area/age, when combined,
are better suited for defining different stocking levels

of stands.

THOMASIUS (1964) has used similar function for the
site quality curves of Spruce (Picea abies,K.). The func-
tion, however, has been fitted to the data for individual
site qualities and does not serve the purpose of a mathe-
matical model in strict sense of the term. Similary he has
used so-called Korsun's function for the number cf stems
per hectare/age relationship, which is entirely empirical,
see KORSUN (1935). The present paper, on the other hand,
suggests inclusion of a standardised wathematical (growth)
model in forestry research relating to growth of single
trees and evenaged stands. The model is a growth model as
it is a mathematical expression satisfying the general
principles of biological growth. On the whole a concept of
computerised yleld tables is offered by the model without
losing the desired accuracy. The model is given in sum-
marised form as under: 1

Growth Model ——- W = A. (1 - b. e~K:Ty =0 ________ (1)
where A = a,+ a,.5+ a2.82+a3.83+ah.8a ---(2)

b = byt by.St by 5%b,.574b, 8% —n(3)

K = kot koS¢ by 5%k5.574k,.8% —— (1)

m=m+ m .S+ m2.82+m3.83+ma.sb ———=(5)

and S = (Hloo - eo)/e1 ---------------- (6)

In the equations W is size or growth dimension of a tree
or even2red stand, T is the age, A, b, k, m are the
four growth parameters, 5 1s the site quality, Hloo 1is
the site index at selected apnronrinte age, ao, al, a2, aj,
8&, bO, b1r b2, b3, bé!, kO, k1) k2, k3. k[l, mo, mil, m2, m},
mb, eo and el arc coefficients on which the growth parame-
ters, site quality and site index arc based.

Matrix omerations have been kept to the minimum so as
to make the mo7el =imnle and understandable by the average
forester. The mode) has been fitted to the data taken from
the existing vield tzlLles of various tree species in Bava-
ria (Germany) and India (Forest Research Institute, D'dun).
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INTRODUCTION

The site quality curves (site index curves) constitute
the most important part of the yield tables and have been
in use throughout the world for a very long time to deter-
mine the site quality of an evenaged stand. The forest re-
search workers and foresters in various parts of the globe
have continuedly attempted to develop techniques for the
construction of these curves/tables, but so far no single
technique can be called as perfect. In most of the silvi-
cultural research codes, presently referring to GRIFFITH
& FRASAD (1949), it is left to the choice of indivisual
authors reasoning that it is not desirable to lay down any
stereotyped method for compiling the sample plot data into
yield tables. The authors in this paper propose a standar-
dised technique of construction of a mathematical (growth)
model for all the yield and growth curves in general and
for the site quality curves in particular.

BRIEF HISTORY OF CONSTRUCTION OF SITE INDEX CURVES

SPURR (1952) and many other authors have summarised
the existing methods of construction of site index curves
and described the causes as to why differences between site
index curves and observed height growth patterns occur.
Leaving aside the method described by ILVESSALO (1927),
Finnland and which is based on Cajander's theory of forest
types, the following two methods have been generally adop-
ted for the purpose:

Method I viz the strip method (Streifenverfahren)
begins in 1877 and is associated with the name of v. Baur,
Germany. In this method, after plotting height or top
height over age for individual plot data, two limiting
curves are drawn, one delimiting the upper extent of the
data and the other, the lower border. The space between the
two limiting curves is then divided into strips of equal
breadth by harmonised curves to construct the final site in-
dex tables.

The method is outdated as there are seriouy basic ubjec~
tions in it. The chief objection is that the guiding curves
are based upon the extremes of the data and not upon the
mean data. Moreover the data in the extremes usually be-
long to few sample plots only. Another objection is the as-
sumption that the form of the growth curves for the middle
site classes is determined by the form of the growth
curves for the best and poorest sites.
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Method II is the method of harmonised site index curves.
It was originally promulgated by Heyer in 1846 (Leitkurven-
verfahren) and is essentially the method of permanent
sample plots. In this method a single mean curve (guiding
curve) of height or top height over age’'is drawn and at
any convenient (index) age, after which the period of rapid
height growth is completed and which should preferably be
somewhat less than the most usual rotation age for the
species, a convenient number of equal height intervals are
selected to limit site classes. A set of curves through the
points so obtained is drawn harmonically with the gulding
curve. Each curve of the family has the same shape and other
characteristics of the guiding curve, only differing in
magnitude by a fixed percentage. Some of the authors have
applied the principles of anamorphosis or alinement charts
(nomograms) to the technique of construction of site index
curves.

Several assumptions are made in the method. The main
assumptions are:

(1) That the data of sample plots adequately sample the
range in site with each age-class and consequently,
the scatter-diagram of height over age adequately
indicates the shape of the curves.

(2) That the effect of difference in site on height
growth is relatively the same at all ages.

(3) That the growth curves for all the sites have the
same shape.

Since none of these assumptions is true, attempts have
been made by the research workers to modify the technique
from time to time. The first assumption can only be satis-
fied by choosing a consistent, efficient and sufficient
sampling technique for the forest stands. Economics of
these stands plays a vital role in it and it should be
safely left to the discretion of the skilled forest managers.
At the same time it 1s also possible that the stands of all
ages on all sites are not growing. See SPURR (1952), page
312.

The problem posed by the second assumption that the
site is correlated with age and thus affects height growth
differently at various ages has been studied in some greater
detail by some authors and to name one by BRUCE & SCHUMA-
CHER (1950). The coefficient of variation¥* of the stand
height for each of the predetermined age-classes is calcu-
lated and plotted over age to determine how much above or
below the guiding curve should each individual site
curve be. This aspect has been studied by CURTIS(1964),
BRICKELL (1968) etc. and the attention of the readers 1is
drawn to these references.

To construct a suitable mathematical (growth) model
for the site index curves we are mainly concerned with the
third assumption, wherein the question arises as to whether
the shape of the growth curves is same for all sites. As
quoted by BECK (1971) the site index curve is simply a
growth curve for a given genetic entity under a set of en-
vironmental conditions. We thus come across as many diffe-

*¥Coeff. of var. = (standard deviation/arithm. mean). 1oo
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rent curve shapes as there are combinations of trees and
environmental conditions - an almost infinite number. There-
fore for economic reasons we cnstruct site index curves
only for a certain tree specles or a provinance or a

variety thereof occurring in abundance and falling under a
certain forest type, assuming that the environmental condi-
tions are more or less the same for the whole area under

the forest type. It is this aspect of different curve

shapes for different sites that we discuss here.

It is now a well established fact that site index curves
are essentially polymorphic, which vary in shape from one
site 1o another. Anamorphic curves hitherto prepared are
gradually being replaced by the polymorphic curves, where
enough reliable data from permanent sample plots are
available to support the fact. The general biological prin-
ciples involved with the growth process of trees are sa-
tisfied by the polymrophic curves and they, therefore, are
to be preferred for estimation of site index.

STATISTICAL BASIS FOR SITE INDEX CURVES

The site quality curves are generally constructed
graphically for complete number of site qualities. The con-
struction of harmonised curves is completely left on the
personal skill of the research worker, which varies from
person to person and thus a chance is given to introduce
human bias in it. Moreover if a crop belongs to a frac-
tional quality interpolation between the successive curves
or tables becomes necessary. Such interpolations also are
tedious and subject to human error. Particularly in the
large scale forest inventories the curves are not of much
use if they are not represented by a suitable mathematical
model. There are measurements of many sample points in
forest inventories and if for each sample point we are re-
quired to estimate site index manually with the help of the
graphical curves,it may cost us much in terms of time,
money and energy. It is, therefore, of utmost importance
that we think deeply of constructing the curves on statis-
tical basis. In our studies the criterion of best fit was
the least sum of squares (least standard error of estimate)
about the non-linear asymptotic function used by us for
model construction. Moreover it is also possible to com-
pute standard errors of various growth parameters involved
in the function. While making polynomial regression
studies 'F' test was simultaneously applied to check
whether a polynomial of higher order was actually re-
quired or not. Whereas further details are available in
the methodology given in the following pages, here we
would like to impress that the field of mathematical sta-
tistics has developed very fast in the last few decades
and it is finding an everincreasing place in all subjects.
We would, therefore, be doing a big injustice to forest
yield science, if we did not use statistical basis in
model construction for growth curves.
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GENERAL BIOLOGICAL PRINCIPLES INVOLVED IN
GROWTH PROCESS OF TREES IN EVENAGED STANDS

ASSMANN (1970) pages 41-48 and many other authors have
already discussed the subject and before the model is de-
scribed at length, it would be proper here tc describe
the general biological principles in the growth process
of trees in evenaged stands and then explain how they
have been satisfied by the model. The Growth curves have
in general the following two characteristics:

(1) They are asymptotic with the staight line W=A,

see Fig. 1(a) as the time (age) approaches tooo.

(2) There 1s one point of inflexion on the curve at an
age, which varies with species to species and with the site
quality within the species. This means that the mean annual
rate of growth (current annual increment) up to this age in-
creases, becomes maximum at this age and falls down after
this age till it slowly reaches to zero i.e. till the
full maturity after which the stand or stem dies. If
these two principles of growth proce.s are satisfied by
the model, such a model should be rairly accurate and
solve one of our important problems in forest yield science,
since such models can be constructed for all the growth
curves, very much required in forestry practice.

CONSTRUCTION OF MATHEMATICAL (GROWTH) MODEL
FOR_GROWTH_CURVES USING THE FLEXIBLE GROWTH
FUNCTICN DEVELOPED BY RICHARDS

It would not be out of place to trace here a brief
history of various growth functions used in applied bio-
logy as the subject is closely related to forest yield
science. A good account is available in the paper of
RICHARDS (1959) and others. A good account is avallable
from the times of PUTTER (1920) and HUXLEY (1932) as men-
tioned by Richards and THOMASIUS (1964). Also refer to
LUDWIG (1929). The growth function developed by Richards
is an extension of work of BERTALANFFY (1941). The func-
tion, also known as Chapman-Richards function in America,
has been very often used in biometrics and related fields
and its utility is everincreasing with the advent of elec—
tronic age. The function is a generalisation of many of

the then existing popular functions e.g.: KT
(1) Monomolecular growth function - W = A.(1-e )

The growth rate equals to k.(A-W). .

(2) Autocatalytic growth function- W= A/(1+b.e” " %)

(also known as logistic func.)

The growth rate equals to k.W.(A=W)/A.

-k.T
(3) Gompertz growth function- W= Ae D
The growth rate equals to

k.w.loge(A/W).
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The generalised function developed by Richards is
as under:

Growth rat ~
rowth rate equation %% = WP K.w ;
Growth function after integration- W o= A.(1—b.e—k'T)1 - m

where

W represents the size at time T and A 1ts ultimate limiting
value; k is known as 'rate constant', which determines
the spread of the curve along the time axis. The growth
parameters A, b, k & m in the growth function and
n, K & m in the growth rate function have been interpreted
by Richards lucidly and they are related to each other as
under (also see Fig. 1(a) and 1(b) ):

In the growth rate function dW/dT 1is the growth rate
at time T. The maximum growth rate occurs at -

(1 A -
WeI=nm ) . (n/K) ) = A.m( =

In the growth function -

)
(/i) T

A = = Asymptote (ultimate limiting
, size)

k = K.(1-m)

b = 1—-(Wo//\)1"m , where W=Wo when T=o0.0

The growth function of Richards can be fitted to data
accurately by method of STEVENS (1951). The equation dealt
with by Stevens is of the following form:

y=o+/3.0%

The equation is a transformed form of monomolecular growth
function described above and is also known as MITSCHERLICH's
law (1948), when used for describing the response of yleld
of a crop to a fertiliser or somewhat comparable influence
factor. About two decades ago the equation was very much
celebrated in various fields of human knowledge. It was
used directly or in transformed forms in physics (Newton's
law of cooling), in agriculture and biology as described
above, in economics and humen soclology for graduation of
life tables by actuaries and for describing population
growth by demographers.

Attempts of deducing growth functions in forest
science have been made in Europe and varticularly in Germa-
ny from very old times. ASSMANN (1970§ has given a brief
description of this in his book, pages 203 <= 205. Men-
tionable are the attempts of WEBER %1891), KOPEZKY (1899)
GEHRHARDT (1901), ROBERTSON (1908), KOVESSI (19293) and
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BACKNANN (1943). We, however, do not claim the history of
development of growth functions to be complete.

THOMASIUS (1964) has deduced a growth function simi-
lar to that of Richards, otherwise almost everybody has
used the growth function developed by Richards since 1959,
when the function was developed. In integrated form the
function deduced by Thomasius is as follows:

Wo= W . {1—e"°'T'(1'ed‘T?}

max

where c and d are growth parameters. Though the function
seems suitable for fitting single curves, yet the growth
parameters arenot so well interpreted as in the function
of Richards., We have, therefore, used the growth function
of Richards for construction of model for growth curves
including the site index curves.

GROWTH_MODEL

)
W= A (b R TYTR (1)
A = a + a1.S +a2.82+a3.53+au.su _______________ (2)
b= byt by.S +b,y.8%4by 84, 8% oo (3)
ko= k+ k.5 +k2.82+k3.83+kb.sb _______________ ()
m = mo+ m,.S +m2.82+m3.s3+mh.sh _______________ (5)
S = (H1o0o - e )/e;  =—mmmmmmmmm e (6)

In the equations W is the size at time (age) T. In
our present studies it is mean stand height or top height
or height of single stems, if the method of stem analysis
has been adopted for constructing site index curves or
mean diameter (breast height, over bark) or basal area of
mean tree or living volume (standard or commercial) of
mean tree or total volume (living vol. + thinned vol.)
per unit area or total number of stems per unit area (or
alternatively its natural logarithm) representing a measure
of stocking density of a particular evenaged stand. A, b,
k & m are the four growth parameters of single growth
curves as previously defined and are functions of site
quality as above. The relation between site index (d100)
and site quality (S) is linear as shown in equation (6)
above. The individual growth curve may have no or one
point of inflexion lying on any part of the curve, which
differs from curve to curve, thus jointly forming a poly-
morphic curve system. Each growth curve is defined com-
pletely by the growth parameters as under:




(1)

(3)
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The point of inflexion, if occurring, lies at the

place where W = I = A. m1/(1—m) where A is the first
growth parameter and represents the ultimate limiting
value of W when time approaches to infinity, in simple
words: when the stem or stand stops putting on increment
or dies. The growth curve is asymptotic to the horizon-
tal asymptote (straignt line) W = A as shown in figu-

re 1. From above it follows that:

1
+ -

i.e. for a growth curve, if A is constant, then the
fourth parameter m is solely responsible for loca-
tion of the point of inflexion on the curve and it,
therefore, exclusively determines the shape (form) of
the sigmoid growth curve. Therefore for construction
of polymorphic site index curves or other growth
curves of similar nature m is the most important pa-
rameter and its regression with the site index should
closely be studied.

The second growth parameter b, as already stated, is
unimportant biologically and only reflects the choice
of zero of time. For site index curves b should always
be equal to 1.0 theoretically, since all these curves
are bound to pass through origin (H = o, when T = o)
For other growth curves b takes different values for
different curves, bigger for lower site index and
smaller for higher. If the origin is taken when the
stem or evenaged stand was planted or started growing,
the growth curves do not pass through it.

See figure 3

The third growth parameter Kk expresses the rate at
which the value of the following linear function of W
changes:

log, § 1 - (w/a)'" ) = logd - k.t

Since the above function of W is specific for each
growth curve depending upon m, it is not easy to inter-
pret usefully differences between k's derived from
curves of different forms, although such compari-
sions have been attempted. Richards infers that the
combined value k/m of the third and fourth parameters
is the mean relative growth rate of a population
wherein all size-classes are represented equally and

is also a weighted mean relative growth rate througout
the growth period, the weighing at any time being pro-
portional to the absolute rate at that time. k/m is,
moreover, the actual relative growth rate at the point
of inflexion on the growth curve. The growth parameter
k has thus three different interpretations as men-
tioned above. The area under the curve is A%.k/(2m+2)
and i1s dependant on A, k, and m. The mean height of the
curve is, therefore, A.k/(2m+2).
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It may be noted here thest the growth rate function

dW/dT = n.W™ - k.W is totally dependant on the growth
function and vice versa. Once the growth function has
been fitted to the growth data, the parameters n and K
of the growth rate function are automatically known viz.

K = k/(1-m) and n=K.A"D

Lastly it may also be asked whether all the four growth
parameters A, b, k and m are really having polynomial
(orthogonal) regression with the site quality as shown by
us in equations (2) to (5) of the model. We shall come to
this point after we have described the methodology of
fitting the model to the data.

METHODOLOGY OF FITTING THE MODEL TO DATA

There are three main steps in the methodology of con-
structing the model for the polymorphic family of site in-
dex curves. They are described as under:

Step I - Preliminary analysis of raw data and construction
of guiding curve: =

The raw data consists of top height (average crop height pre-
viously used) and age figures obtained by measurements of
permanent sample plots laid out in normal evenaged stands
in various age-classes. In absence of adequate number of
permanent sample plots data may be collected from temporary
sample plots. The main disadvantage of temporary sample
plots is that the plots might not have been normal through-
out in the past. The data are also collected during the
course of large scale national forest inventories by the
standard method of stem analysis or increment borings.
Whereas the disadvantages of the data collection by the
latter methods are obvious, at times the methods are uti-
lised for economic reasons.

A mean height over age curve is then plotted which is
known as the guiding curve. Some authors have impressed
that the average height over age curve may not necessa-
rily represent the guiding curve. For instance BRICKELL
(1968, on page 8 ) states that the mean curve does not
represent a true height / age curve under the assumptions
of equal representation of site quality in all age-classes,
rather a curve fitted to medians i.e.50-percent probabi-
lity points of the within segment distributions should
describe a true height growth curve at that paticular
level of site index. It is suggested that frequency dis-
tributions of the residuals from the guiding curve in
each sample segment should closely be studied. If the
distribution is not found normal, the studies should
further be extended to include computation of indices of
skewness and kurtosis; refer KENDALL & STUART (1963). In
any case the guiding curve must be constructed with all
the precautions and after having the data analysed
thoroughly. Heights at different probability levels should
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be then computed with the help of the frequency distribu-
tion of residuals. Refer BRICKELL (1968), page 9 and 10.
The guiding curve along with the other polymorphic curve
series of different probability percentage points should
be fitted to data according to the procedure given in step
IT. The authors fully realise the practical difficulties
involved in determination of the guiding curve, paticular-
ly when we observe many abnormal growth trends in the
scatter-diagram. We would only like to emphasise that the
statistical methods should be used to determine the exact
growth trends. Since we have taken data from various yield
tables in present analysis, we have more interest in fit-
ting an appropriate model to the already processed data

to generate a system of polymorphic growth curves. We,
therefore, proceed to describe the more important step
below:

Step II - Use of Richard's growth function to fit indi-
vidual growth curves to data: -

Richard's growth function can be fitted to the data per-
taining to single sigmoid growth curves by many ways.
Richards suggests in his paper, pages 292 and 299, that
the function developed by him may be fitted to data by the
method of STEVENS (1951) as follows:

.Growth function-
W= A.(1 - b.e K-T)T-m

w1—m - A1—m

-k.T

that means Al ™, b. e

replacing wl-m by y, AT by, b.ATT® by -/3 and
KT by o

X

we get - x
y= &« + 4.p which, as
earlier stated, is the equation dealt with by Stevens. A
short description of steven's method may be given here to
explain the further procedure. HIORNS (1965) may also be
referred.

It is assumed that all observations have been given the
same weight. There is no mathematical difficulty in writing
down the normal equations to give the least squares or
maximum likelihood estimates. Since these equations yield
estimates, it will be appropriate to replace ¢, B and P by
a, b and r respectively. Note that b here is the estimate
of A and is totally different from b, the second parameter
of Richard's growth function.

-a.n -b. 8(rX) + Y =
-a. 8(r*)  -b. s(r2%) Y, = (1)
—a.b.S(rX—1)-bZ.S(x.r2x~1) + b.Y, = o

2
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where -
n = number of observations
S(...) = summation over the n values of x or y
Y = S(y)
Y, = 8( ¥,

y )
Y, = S( x. pX1

> y )

The information matrix is found by differentiating the ex-
pressions in the normal equations with respect to a, b and
r in turn, putting each y equal to its expected value and
changing all signs:

n 5(r%) b.S(x.r*" 1)
{i} = s(r™) s(r?%) b.S(x.r* ) -=(11)
b.5(x.rX1) b.s(x.r?T) b2 5(x2. p2X2)

It will be noted that the first column of terms in the
block of normal equations is the first column of terms in
the information matrix mulitplied by (-a). Similarly the
second column is the second column of the information ma-
trix multiplied by (-b). On inverting the information ma-
trix, we find that the covariance matrix has the form:

Faa Fab Far/b
{(Vh=1/(f =iry, Fop Por/® ¢ =mmes (111)
2
Far/b Fbr/b Frr/b
where Faa’ Fab’ be, Far and Frr are functions only

of r, being in fact the components of the reciprocal ma-
trix:

n s(r*) S(x.rX" 1
s(r¥) s(r?%) S(x.re*xN VU (1v)
S(x.rx_1) S(x.r2x~1) S(xz.rzx—z)

Following Fisher's general method, we may start from pre-
liminary inefficient estimates a', b',r'and insert these

in the left hand side of the normal equations which, in-
stead of yielding exactly zero, now take the small values
A, B and R respectively. Efficient estimates a, b and r are
now found by adding to the preliminary estimates, the re-



spective increments d{a, (b, and dJr, where

da = Faa' A+ Fop- B + Far'R/b
db = Fope A+ Fop: B + Fbr.R/b ————————— (v)
b . §r = Fops A+ Fypr B+ Frr.R/b

In consequence of the relations, noted above, between co-
lumns of the block of normal aquations and columns of the
information matrix, the expressions for the increments
simplify to:

{fa=-a' 4 Faa: Y+ Fape Yy + F . Y,
§b = =b' 4 F L Y w Pl Yy o+ Byl Y, —mon(vi)
b . dr = Far‘ Y + Fope Yy + F.- Y2

Hence efficient estimates are:

a=a+ da=F _.Y+F . .Y, +F .Y

b

b' + Jb

1}
Ty

r r' + {r
where

6fr = (Far.Y + Fpo Y, + Frr.Yz)/b

It may be noted that the preliminary estimates of aCand/3
have fallen out of the equations. This means that we need
find a preliminary estimate only for P : the estimates of
the other two parameters are then glven explicitely in
terms of functions which depend only on the preliminary
estimate of P and, of course, on the observations.

Calculation of standard errors:
Finally we have to defermine the sum of deviations from the
fitted regression curve:

S(y—ye)2 = sum of squared deviations

The formulae for the standard errors of the estimate are
stated as under:

S.E.(a)

S.E.(b) = A/?;;;T;E; ————————————— (viii)

S.E.(r) =( [(F__.s?) /v

]
—
]
0

where
82 = S(y - ye)2 / (n - 3)
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Equally spaced ordinates:
Although in the above procedure an arbitrary series of va-
lues of x can be used, the most simple, natural and useful
series is one in which the values of x advance in equal
steps. If there are n values of x, we may, by a simple
change of units and origin, designate these as:

X =0, 1, 2, «v.... (n=-1)

Stevens has prepared tables of the components of the F ma-
trix for n = 5, 6 and 7. These tables have now been exten-
ded by HIORNS (1965) for n =8, 9, ..... , 30, thus in-
creasing the utility of the standard method of Stevens.

It may be noted that:

i) The growth equation of Richards becomes insoluble
when m = 1, nevertheless a Gompertz curve* can
still be fitted with considerable accuracy by
Stevens's method if a value of, say 0.999 or 1.o001
be chosen for m.

(11) An iterative process is necessary for determining
the value of m. The number of iterations is, how-
ever, very low, as the priliminary estimate of m
can be found out with fair amount of accurac by
the method given by RICHARDS (1959, page 295) by
plotting the growth rate dW/dT over the value W/A.
It is quite easy to make an initial guess of para-
meter A by simply plotting the data on a graph pa-
per. Also refer RAWAT (1973) for this, who has
estimated the value of m by Richards's method for a
number of species.

HIORNS (1965) describes the method of Stevens and other
methods available for asmptotic regression and claims that
in general none is better than Stevens's method. He quotes
some methods due to HARTLEY (1948), PATTERSON (1956, 1958,
1960), PATTERSON & LIPTON (1959) and GOMES (1953?. With
these methods there is loss of efficiency and estimates
may be bilased; these features have been discussed by
FINNEY (1958) and HARTLEY (1959) . NELDER (1961) has worked
further on logistic curves of BERKSON (1953). TURNER,
MUNROE & LUCAS (1961) can also be said to have dealt with
the problem. Probit analysis developed by BLISS (1935) and
extended further by FINNEY (1952) is also an important step
towards analysis of so-called sigmoid response curves.
Hiorns, however, misses the name of MARQUARDT (1963). Mar-

* -k.T
Gompertz curve is W =A. e

-k.T

or log,W = log,A - b. e

Replacing 1ogew by vy, logeA by « ,b by —/3and -k.T by
x.logg,
we get -

y=d+ 3. p,p* .... (Stevens's
equation)
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quardt's method of maximum neighbourhood is an improvement
over the Gauss-Newton method. The method is based on the
expansion of a non-liinezr function to a Tailor s.ries com—
bined with the method of steepest descent or its verious
modifications. The method is suitable for any non-linear
function with any number of parameters and is available
for processing in electronic computers as IBM Share Pro-
gram No. 1428, FORTRAN program. The computer program is
now avajilable in computer language PL/I also as Share
Program SDA 3094.01, NLIN-2.

In forest science models for site index curves have so
far been constructed by BRICKELL (1966, 1968), LUNDGREN &
DOLID (1970), BECK (1971), HECGLUND (1972), RAWAT (1973)
and probably by some other authors. All of them have used
the growth function of Kichards. Whereas LUNDGREN & DOLID
(1970) and RAWAT (1973) took data from existing yield

tables, the rest of the authors did the work from raw data.

TURNBULL & PIENAAR (1965) also used the growth function to
construct a model for analysis and prediction of growth in
non-normal and thinned forest stands. Out of these authors
none except RAWAT (1973) fitted the function by method of
Stevens, the suitability of which has already been dis-
cussed. Details of the computer program for Stevens's
method of curve fitting are avaiable with the authors. It
may be also mentioned here that the method is much more
simple than the others, in that the facilities of electro-
nic computer for it are desirable but not necessary. [Fur-
. ther HAGGLUND (1972) remarks on page 256 that the Gauss-
Newton method does not give a certain convergence, which
is not the case with Stevens's method. NELDER (1961) com-
ments on Stevens's method as under:

" Several papers concerned with fitting of the curve

t , ;
z = oL+ /3. 5 have appeared, but turuise are al-
most entirely concerned with the case where z has con-
stant variance and where ti are equally spaced. Where time

scale based on meteorological measurements (such as day-
degrees) are used for field crops, it is usually impos-
sible or impracticable to arrange for equally spaced t's,
so that methods used in the abovementioned papers are no
longer available, even if it could be assumed that var (z)
was constant."

We apree with Nelder as we require equally spaced va-
Jues of t (time) in Stevens's method, if we liks to
utilise the facilities of the tables for ¢ lculating the
covariance matrix. This is not required in some other
methods. Dut for our purpose Stevens's method is still
suitable as we take measurements of permanent sample
plots or in stem analysis at equal intervals of 5 or 10
vears. Particularly the tables for calculating the co-
variance matrix are :vailable upto n = 30 and now it
becomes very easy to reduce the time scale to suit our
purpose. If this is not possible under exceptional cir-
cumstances, the method developed by Marguardt or by
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others are still available, but then the facilities o”
electronic computer are unavoidably required. We, there-
fore, prefer the accurate and standardised method of
Stevens for fitting Richards's growth function. Moreover
standard errors of parameters can be calculated in the
method and thus their upper and lower limits can be pre-
dicted.

Step III - Completion of morlel construction work by

harmonising The polymorphic famlily of growth curves: -

After having fitted the function to the data for indivi-
dual growth curves the next step is to study regression
between various growth parameters and site quality, so
that a mathemntical model may be constructed to generate
a system of polymorphic growth curves. Regressicn of
growth parameters A and b with the site index is simple
and poses no problem. It may Le made clear here that cite
quality (and not the site index) has been taken by us to
study the regression, as site quality is in complete num-
bers and facilitates the use of orthogonal polynomials,
which are much more simple than the general polynomials
and can be fitted even with the help of already available
tables; see FISHER & YATES (1957) and SPRENT (1969, page
74). Site quality and site index are having perfect
linear regression and no accuracy is lost in the process.
This has at the same time helped us in siplifying the
regression studles. In most of the cases we don't require

polynomial higher than the second order §parabola) and
in one or two cases only the first order straight line)
polynomial was enough. Usual F-test was applied in study-
ing the regression. Standard IBM-Program ?1966) was
applied for the purpose. We have studied the regression
for ten tree species, seven of them growing in Germany viz.
Spruce, Pine, Fir, Larch, Douglas Fir, Beech and Oak and
rest three growing in India viz. Teak, sal and Deodara. In
this paper for want of space results are given for three
specles only, namely for Spruce, Pine and Deodara. Also
see fig.2. The regression studies of these two growth
parameters (A & b) with site quality (site index) are in
line with those made by other authors.

The most important regression studies are of growth
parameters m & k with site quality. BRICKELL (1968) could
not find any regression between site index and m and had,
therefore, to keep m constant for all levels of site index,
thus restricting the true polymorphic nature of the growth
curves. LUNDGREN & DOLID (1970) have kept k & m both pa-
rameters constant for all site index levels and thus lost
the flexibility of the function. BECK (1971) states that
keeping m constant for all site index levels no signifi-
cant difference was observed in standard error of esti-
mate. It is most probably on account of the fact that he
used Marquardt's method of curve fitting, in which all
the growth parameters can be simultaneously changed to get
the best fit. We are still not definite if Beck could get
suitable regression between m and site index by deter-
mining m first ty the method of Richards and then using

o)
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the method of Stevens. HAGGLUND (1972) on page 256, who
also used the Newton-Gauss method (improved by Marquardt)
got a satisfactory regression of the growth parameters m
and k with A as under:

kK =a+ b, a° and m=d+e. A
He thus replaced site index by A. We do not know how we
are benefitted by that. Though it is not easy to find out
suitable regression of m and k with the site index, we
found that a polynomial regression upto the fourth or-
der 1s generally sufficient to maintain the desired accu—
racy (1 foot for top height). The site index curves may
be constructed right from zero age (beginning) and there
is no hesitation in doing so, as it existed before. Still
we would like to confess that regression of m with site
index is, though simplified by fitting the curve by method
of Stevens, yet not suitably represented by polynomial re-
gression.

NON-LINEAR ASYMPTOTIC REGRESSION STUDIES FOR OTHER

GROWTH CURVES AND SUITABILITY OF THE MODEL FOR
STOCKING DENSITY OF EVENAGED STANDS

After having described the methodology of fitting
asymptotic curves to growth data of site index, we would
also like to discuss here the properties of other growth
curves viz.

(i) Diameter (b.h.o.b)/age curves for single stems

or mean tree of stand.

(ii) Basal area/age curves for single stems or mean
tree of the stand. )

(iii) Living volume (standard or commercial)/age curves
for single stems or mean tree of stand.

(iv) Total volume/age curves for per unit area of

stand. Total vol. = Living vol. + Thinned vol.

(v) Number of stems per unit area/age curves of stand

for a given stocking density.
When we say mean tree of stand, we presume that the even-
aged stand has been maintained at a particular stocking
density level throughout its life through a continuous
thinning-policy with equally spaced thinning cycles and
a conitant thinning intensity. Refer to JOHNSTON & BRADLEY
(1963).

SPURR (195%2) pages 211 - 216 describes the properties
of first three of the above curves. The fourth curve is
an ideal case for non-linesar asymptotic studies. The
fifth curve is not a growth curve but is intimately re-
lated to growth. All these five curves have basically the
same properties as site index curves have. The point of
inflexion, if at all occurring, lies at different places
on the curves depending upon the stocking density, site
and environment and leaving apart the genetic factor. The
fifth curve, representing the stocking density by number
of stems per unit area of an evenaged stand for a parti-
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cular grade of thinning is of particular importance and
needs a bit more attention. It appears that few research
workers have tried to study its true non-linear asymptotic
nature with age, having one point of inflexion in a very
early age. The number of stems per unit ares at a parti-
cular age varies from species to species, site to site and
from one plantation technique or management practice to
other. Generally the number is quite large in the beginning
and it does not interest the researchers till thinning
operations are started. We found that if common loga-
rithm of number of stems per unit area is plotted over age,
the resulting curve can be represented well by the model
proposed by us. The asymptote W = A falls below the curve
as against in growth curves, where the asymptote lies
above the curves. TURNBULL & PIENAAR (1965) have proposed
a mathematical system of basal area/acre over age curves
for a given site quality to define the expected trend of
growth for stands of different stocking levels. The scheme
of correlated curved trend (C.C.T.) plots, originally
proposed by O'CONNOR (1935) and worked upon by MARSH (1957),
PIZNAAR (1965) and others seems to be a good approach to
problems in thinning research. There is also no doubt that
basal area is the simplest and most widely accepted measure
of stocking density. However while examining the mathema-
tical system and working it out for own species we noticed
that stand basal area per acre/age curves are not asympto-
tic in most of the cases as advocated by them. Thecee curves
bend downwards after reaching the maximum value for stands
of some of the species like Pine (Pinus silvestris, L.).
The data has been taken from the yield tables of WIEDEMANN
(1957). See fig. 4 . It is because of the fact that the
site is not capable of supporting optimum number of stems
per unit area at higher ages. (See ASSMANN & FRANZ (1972) ).
When this downward trend starts we start losing optimum
volume, but not necessarily money as the market trend may
be much more positive for higher dimension of timber. It
is this analysis that lead us to think on other lines.
Though the subject pertains to thinning research requiring
detailed investigations and analysis, we found that stand
basal area represented by mean tree over age (growth
curve (i1i) ) and the number of stems per unit area over
age (curve (v) ), when combined, are better suited to de-
fine the different stocking density levels of stands as the
base of the proposed model. At the same time both types of
curves maintaln asymptotic character with age and the model
proposed by us is well suited to both of them. See fig.5%6.
THOMASIUS (196/4) uses the so-called KORSUN's function (1935),
which 1is a double logarithmic parabola, for the number of
stems per hectare over age relationship. The function does
not have enough flexibility to represent the biological
growth trends with desirable accuracy.

The model can be fitted to total volume per
unit area over age curves (curve (iv) ) similarly and
substracting from it the product of growth curve (111) and
v) for a paticular age would give us thinned volume for
that age, for which suitable regression curves were not
available uptill now. For want of space it is not pos-
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sible to give here all the results. However diameter over
age curves (curve (i) ) are reproduced in fig. 3.

A _CRITICAL LOOK AT THE MODEL

The model, no doubt, is fairly accurate for all the
growth curves and ls proposed to be used widely for yield
and growth studies. We offer here a concept of computerised
vleld tables of evenaged stands, based entirely on the
model. Facilities of electronic computer are desirable to
construct the model but are not necessary if standard
method of Stevens is used to fit Richards growth function
to indivisual growth curves. A further critical look, how-
ever, would show that:

(i) The non-linear function can not be transformed in-
to a linear form except for a particular level of site in-
dex. Refer TURNBULL & PIENAAR (1965, page 3). The model,
therefore, has all the disadvantages ofanon-linear system.
The methods of linear regression are not available for it.

Thus it becomes a bit difficult and beyond the reach
of an average practising forester.

(ii) The function is nonconvertible i.e. its equation
can not be readily solved for site index, when age and
top height are known. On the other hand if site index is
known, we can calculate top height for a given age and
vice versa. Thus site index can only be estimated by inter-

« pelations between successlve tables or curves. Interpo-

lation in a non-linear system can lead to inaccuracies.
Therefore we have to look for some alternative, by which
site index can be calculated directly when top height and
age are known.

Attempts have been made by some authors in this direc-
tion. BRICKELL (1970) and HAGGLUND (1972) have listed
most of the approximate functions for the purpose and
found Lhat different approximate functions are suitable
for different tree species. No general choice of a func~
tion can be made over the rest. The following approximate
functions have been found suitable by us:

—a/T 1/(1+e~b/T)
(1) H1oo = (H/e /%)
(z)  Hloo = H+b1.(1ogT~10g1oo)+b2.(T2—1002)+b3.(% -2
+by, - ( ﬁ7 - o 5)
T 100°
(3)  Hloo = H . (1+a.(f ~ + ) )

where H1oo is site index and H is top
height at age T.
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CONCLUSIONS

Detailed non-linear asymptotic regression studies have
been carried out on tree and stand growth for ten economi-
cally important tree species occurring in Germany and India.
A mathematical (growth) model has been constructed for all
the growth curves in general and for the site index curves
in particular. The system of growth curves generated by the
model satisfies general principles of growth process of
trees. Polymorphic system of curves results when Hichards's
rrowth function is used for curve fitting. It is proposed
that the function be fitted to growth data by standard
method of Stevens. The method facilitates manual handling
of data, although facilities of electronic computer are
desirable. Standard errors of growth parameters can also
be calculated if Stevens's method is used for the purpose.

Site quality is proposed to be used instead of site in-
dex to study its regression with the growth parameters, be-
cause it facilitates the use of orthogonal polynomial
tables, thereby reducing the computational work.

The model is flexible and is, therefore, equally
suitable for all other growth curves. The model can also
be used for defining stocking density over age relation-
ship for different thinning regimes, when the following two
curves are combined:

(1) Stand basal area represented by mean tree of the
stand over age curve under the prescribed thinning
regime.

(11) Number of stems per unit area over age curve under
the same thinning regime as in (i) above. The curve
is better defined when common logrithm of number
of stems 1is used.

The proposed model may be utilised for analysis and inter-
pretation of data collected for thinning research.

The growth function is mathematically inconvertible.
Site index can not be directly calculated by it, if top
height and age are known. Site index may, therefore, be
calculated by some suitable approximate functions pro-
posed in the paper.
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Fig. 1(a

Fig. 1(a) - shows Richards's growth function fitted to three

Fig. 1(b) -

polymorphic growth curves. Their three different
horizontal asymptotes and points of inflexion
have also been shown.

E(F

i

=
Fig. 1(b)

shows Richards's growth rate function for three
different growth rate curves. The function is
able to represent the differences among various
ages of culmination varying with site.
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Fig. 1(c¢c

Fig. 1(c) - shows the relationship between growth rate d¥/dT

and size W, when ¥ is meagured in terms of its
ultimate asymptotic value A. The position of
maximas of different curves gives us preliminary
estimate of m, the fourth growth parameter of
Richards's growth function.

la. FICHTE (ASSMANN u. FRANZ, 1963)
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SPRUCE (FICHTE, ASSMANN-FRANZ 1963)
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PINE(KIEFER - WIEDEMANN, 194 3)
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DEODARA (CHAMPION & MAHENDRU, 1933)
JNDIA
DIAMETER | AGE CURVES
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SPRUCE (FICHTE, ASSMANN-FRANZ 1963), GERMANY

Basal area per hecfare/age curves
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INTRODUCTION

The development of growth models has been an important
part of the research in growth and yield since the

end of the last century. Models were originally
based on graphical descriptions of the development
of stand parameters such as mean height, basal area,
volume, mean diameter, etc. Later, mathematical
descriptions of growth processes were also used.

analysis was introduced

1930s. During
multi-

A new era began when regression
into growth and yield studies in the
the past decades, a number of new methods in
variate analysis have been successfully applied to
growth and yield problems. Many of these methods
involve elaborate calculations, which can hardly be
performed without the fast computers now available.
These computers have also made it possible to handle
large amounts of data and thus to develop and apply
growth models not only for stands but also for single

trees.
As a result of this recent rapid progress, there is
today, all over the world, much activity in developing
growth models. The subject‘growth models for tree and
stand simulation”was therefore chosen as the main
theme of two meetings in 1973 of IUFRO Subject Group
Sh.01 Mensuration, Growth and Yield. The papers
presented at these two meetings form the contents of

this book.

to express my gratitude to all those who helped

I wish
I should especially

in organizing the two meetings.
like to mention Jean Pardé and William Warren, who

were responsible for organizing the meetings in Nancy,
France and Vancouver, British Columbia, Canada,
respectively, and No#l Decourt and Terry Honer,
who took a large part in the collection of the papers.

Joran Fries
Leader of IUFRO S4.01
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