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Predicting Tree Mortality for European Beech in
Southern Germany Using Spatially Explicit
Competition Indices
Andreas Boeck, Jochen Dieler, Peter Biber, Hans Pretzsch, and Donna P. Ankerst

Individual tree mortality prediction is a key component of single tree-based stand simulators. However, accurate modeling of long-term research plot data is hampered
by rare events, variable lengths of observation, and multiple sources of heterogeneity. This study makes use of a result from medicine that demonstrates the equivalence
of logistic and Cox proportional hazards regression for modeling survival data in the case of large sample sizes, rare events, and variable interval periods of observation.
Pooled logistic regression models are used to model tree mortality across multiple observation periods with random effects to account for heterogeneity due to plots
and calendar year. The models are applied to data from 21,051 observation periods (each approximately 5 years) from 9,292 beech trees in a Bavarian long-term
forest research plot network. Among the observation periods studied, 604 (2.9%) resulted in a mortality. Indices measuring competition from light, trees of the same
species, conifer trees, and shading are significantly associated with mortality, whereas other variables, including dbh, fail to add additional predictive value. Analytic
equations for predicting mortality in new trees are provided and yield an area underneath the receiver operating characteristic curve of 91.5%.
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Individual mortality prediction is an essential component of sin-
gle tree-based forest growth models, including the simulator
SILVA currently used in southern Germany (Pretzsch et al.

2002). There are data and statistical challenges to mortality model-
ing. Although data from large numbers of regularly monitored long-
term research plots may be available, their information content is
hampered by low numbers of events, in this case, deaths of trees. The
situation is exacerbated for estimating the combined effects of risk
factors on rare events. An additional challenge is that the duration of
follow-up of individual trees often varies and comprises several pe-
riods. This raises the question of how to account for dependencies
between multiple observations on the same tree. Different statistical
methods have been used in the forest science literature for predicting
individual tree mortality, the primary being logistic regression. To
avoid the dependence issue, typically a cross-sectional approach is
chosen, whereby a single period of observation is selected for analysis
and the rest are discarded. The interval may be selected at random
for each tree or nonrandomly as the one that ultimately resulted in
mortality of the tree. The latter results in an overestimation of the
mortality rate and is biased.

The Cox model for survival data is a ubiquitous method used in
medicine for modeling time to mortality (Cox 1972). Rather than
modeling the dichotomous event, alive versus dead, it models the
time until mortality. Importantly, it correctly accounts for unob-
served event times due to censoring. There are three types of cen-
soring. Interval censoring refers to situations in which the time of
the event is known to fall within a window of time but not known
exactly when during that interval. Right-censoring occurs when an
individual is known to not have experienced the event up until a
certain time, but not known when afterwards, and left-censoring is
the reverse. To use the Cox model, it is necessary to assume that the
censoring mechanism is independent of the time until the event
process. The Cox model relates the hazard or instantaneous rate of
mortality at any time to covariates. Alternatively, logistic regression
relates the probability of death in a single interval to covariates.
Unfortunately, survival models are not ideal for situations in which
there are long periods between monitoring and low event rates, as
could be expected in this application.

This article outlines an individual tree mortality prediction strat-
egy that is tailored for data from multiple periods of observations in
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long-term research plots. The approach is based on a result previ-
ously proven and applied in medicine. This useful result is that the
Cox regression model is equivalent to the logistic regression model
in the case of large data sets, interval monitoring, and rare events
(Abbott 1985, D’Agostino et al. 1990). In this forest application, a
pooled logistic random-effects model is fit to data derived from
21,051 periodic measurements obtained at approximately 5-year
intervals on 9,292 beech trees in a network of Bavarian forests. The
model-fitting process is evaluated using internal cross-validation.
The models are applied to improve the individual-tree mortality
component of the existing forest simulator SILVA (Pretzsch et al.
2002). However, the general methodology is applicable to the de-
velopment of mortality risk prediction models based on commonly
collected attributes, such as dbh. Unlike most studies, the data here
comprise individual tree positions, which enable the inclusion of
spatially explicit individual-tree competition indices as covariates.

Materials and Methods
Data

Data were collected from beech trees taken from 60 plots at 11
test sites in Bavaria, Germany, that were undergoing surveillance
from 1954 until 2007. Individual trees were observed for between
one and seven observation periods during these years, with observa-
tion periods ranging from 3 to 28 years (most were 5 years). Obser-
vation periods during which the tree experienced mortality through
man-made thinning or natural disasters, such as storms, were ex-
cluded. Only individual trees that had information on the risk fac-
tors defined in Table 1 at the beginning of an observation period and
mortality (yes versus no) at the end of the same observation period
were included in the analysis. Risk factors considered in the predic-
tion models comprised measures of the size of individual trees, a set
of indices covering different aspects of competition, site quality
information, calendar year, and length in years of the individual
observation periods. In total, 21,051 single-tree observation periods
comprising 9,292 beech trees from 60 plots were available for anal-
ysis. Of the 21,051 observation periods, 604 (2.9%) were associated
with mortality.

For the model selection component of the analysis, 29 plots were
included that had a minimal mortality of 1% for all observation

periods. The model selection was performed on this subset to reduce
convergence problems in estimation of plot random effects arising
from plot observation periods that had negligible or no mortality.
Once the final model form was selected, it was refit on the entire data
set comprising all 60 plots.

Tree size as a risk factor was expressed by the dbh. Age was not
available for the trees in this study, and, furthermore, it is not always
available to the forest manager. However, age inevitably correlates
with tree size. Tree height was another measure for size, but because
in these data height was only measured on a subsample of trees and
estimated for the others, it was not preferred over dbh.

Competition was divided into two aspects: momentary compe-
tition and the long-term competition a tree has had in the past.
Although the former can be strongly influenced by ad hoc thinnings,
the latter expresses the typical competition a tree has undergone
during its life. For quantifying momentary competition, KKL, a
simple geometric competition index, and a set of indices derived
from local vertical competition profiles were used (Pretzsch et al.
2002; see Appendix). The indices CIIntra and CIConifer were de-
rived from a general competition index, called CICUM60, which is
similar to KKL and designed to measure overall momentary com-
petition. CIIntra was the component of CICUM60 attributable to
trees that belong to the same species as the tree of interest. CIConifer
represented the portion of CICUM60 that originates from conifer
species. The basic concept of vertical competition profiles permitted
separation of two other important aspects of momentary competi-
tion: overshading and lateral constriction, expressed by the indices
CIOvershade and CILateral, respectively (Assmann 1961, Pretzsch
1992). Further details on the competition indices can be found in
the Appendix.

For long-term competition, a different concept that compared
actual tree size to a reference tree size was needed. If a given tree size
was small compared with a reference tree size, the tree must have had
strong competition in the past and vice versa. Because trees under
competition show a reduction in diameter increment more than in
height increment, the dbhdom measure was used as a reference. This
measure was defined as the dbh a predominant (low long-term com-
petition) tree had at a given height and was estimated as follows.
From a subsample of the data, the allometric relationship, dbh-
dom � 0.6553 � height1.327, was estimated (with the units of m for
height and cm for diameter) and used to estimate the dbhdom a tree
could have achieved at its current height under very low competition
during its life up until the present. Dividing the tree’s current dbh by
the estimated dbhdom yielded the measure reldbhdom. Low values
of reldbhdom indicated that the tree had undergone stronger long-
term competition, whereas larger values near or even exceeding 1
indicated the tree had not undergone much competition through-
out its life. Finally, site quality (SiteIndex) was expressed through
the expected mean stand height in m at age 40 years based on the
yield table for European beech of Schober (1967).

Statistical Models
As an initial exploratory analysis, risk factors and observational

characteristics were compared between tree observation periods
with and without mortality using means, standard deviations (SDs),
and ranges. Differences in risk factors between tree observation pe-
riods that resulted in mortalities versus nonmortalities were tested
for statistical significance using the nonparametric Wilcoxon test.
Multiple observation periods for individual trees were treated as

Table 1. Definitions of variables and risk factors used in the
mortality analysis.

Characteristic Definition

PeriodOnset First year of survey period
PeriodOffset Last year of survey period
PeriodLength Length of the period of observation in years
Dbh Diameter at breast height (1.3 m) in cm
Height Tree height in m
KKLa Quantifies light competition by neighboring trees
CIIntraa Competition from trees of the same species as the tree of

interest
CIConifera Competition from conifer trees
CIOvershadea Expresses to what extent a tree is over-shaded by other

trees
CILaterala Lateral competition of a tree
Dbhdom Estimation of the dbh (in cm) a tree would have at its

current height if predominant for its whole life
�� 0.6553 � height1.327�

Reldbhdom Ratio dbh/dbhdom that measures long-term competition
SiteIndex Plot- and species-wise site index, expressed as stand

height in m at age 40 (derived from standard yield
tables)

a See Appendix.
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independent, whereas lengths of tree observation periods were ig-
nored. The Wilcoxon statistic was transformed to the area under-
neath the receiver operating characteristic (ROC) curve (AUC)
(Faraggi and Reiser, 2002). ROC curves and AUCs are statistics
often used in diagnostic medicine to evaluate risk factors or com-
puted probabilities (risks) of diseases. The concepts can be trans-
ferred for evaluating the predictive value of tree characteristics for
mortality. Without loss of generality suppose that high values of a
tree characteristic are associated with mortality, such as high values
of a competition index X (for the reverse, where low values of a
characteristic are associated with mortality, inequality signs in the
following are reversed). A diagnostic test for mortality based on X
might be defined as a tree testing positive for mortality whenever X
exceeds a threshold c (X � c). The sensitivity of this threshold is
defined as the proportion of all tree observation periods with a
mortality where X � c, and the specificity as the proportion of all
tree observation periods without mortality where X � c (test nega-
tive). Sensitivities and specificities range from 0 to 100%; higher
values of both imply a better test for distinguishing tree observation
periods that result in mortalities from nonmortalities. The ROC
curve is a plot of 100% � specificity on the x-axis (called the false-
positive rate) versus sensitivity on the y-axis for all possible thresh-
olds c. The AUC is the area underneath the ROC curve and ranges
from 50 to 100%. Interestingly, the AUC has a partner mathemat-
ical definition: the AUC equals the probability that for a randomly
chosen tree observation period that resulted in mortality and a ran-
domly chosen tree observation period that did not result in mortal-
ity, the former has a higher value of X. An AUC close to 100%
indicates good discrimination of X for mortality, whereas an AUC
close to 50% indicates that the risk factor exhibits no better discrim-
inating ability between observation periods with mortality versus
nonmortality than random choice. The P value reported for the
Wilcoxon test is also the P value for a test of the null hypothesis that
the AUC equals 50% versus the alternative that the AUC exceeds
50%. The ROC and AUC also apply for the case where X is a
predicted probability of mortality, such as that arriving from a
model fit to a training set of trees. In this case, however, it is impor-
tant that a set of trees (validation or test set) separate from that used
to build the model for X be used to evaluate the ROC and AUC.
This is necessary to avoid overoptimism from fitting and evaluating
the model on the same data set.

The statistical model used for the association of risk factors col-
lected at the beginning of an observation period with mortality by
the end of the same period was adapted from an application in
public health. Faced similarly with large sample sizes and rare events
in their analysis of cardiovascular events in the Framingham Heart
Study, Abbott (1985) and D’Agostino et al. (1990) demonstrated
the asymptotic equivalence of the grouped Cox proportional haz-
ards survival model (Cox 1972) to pooled logistic regression, where,
in the latter, multiple observation periods per individual were
treated as independent. In this analysis, to account for unequal
length of observation periods, a fixed offset term, called the obser-
vation length, was applied as commonly performed in relative risk
modeling in epidemiology. Risk factors were modeled as fixed ef-
fects and plots as random effects. The initial year of each observa-
tion, referred to as the calendar effect, was also included as an inde-
pendent random effect to the plot effect, to serve as a proxy for
long-term effects such as global warming. Plot and calendar year
random effects were assumed to follow independent normal distri-
butions centered at 0 with respective plot and calendar year SDs.

Selection of the optimal transformation of risk factors to include
in the logistic regression was performed in two stages. The first stage
(stage I) did not use the mortality endpoint but rather focused on
transforming the individual risk factors so that their empirical dis-
tributions would be as close as possible to a normal distribution.
Normality of the risk factors is not a requirement for logistic regres-
sion; however, a symmetric and compact design space can improve
the fit of the model. Three of the risk factors, KKL, CILateral, and
CIConifer, had a disproportionately large number equal to 0 (Table
1). The zero values were removed to achieve an optimal transforma-
tion. The transformations considered were power transformations
for which power could range from 0.01 to 1. The Kolmogorov-
Smirnov test for normality was used to find an optimal power trans-
form with the transform corresponding to the smallest value of the
Kolmogorov-Smirnov test statistic declared as optimal. The optimal
power was rounded to the closest fraction, and the variable was
transformed by this power for all further analyses.

In the second stage (stage II), cubic B-splines with a second-order
penalty were used to find the optimal relationship of transformed
risk factors to mortality (Eilers and Marx 1996). This stage was
performed by fitting one risk factor at a time in a logistic regression
model. For risk factors with point masses at 0 (KKL, CILateral, and
CIConifer), two alternative risk relationships were considered: the
first, an odds ratio (OR) for the risk factor equal to 0 versus greater
than 0, and the second, the same OR as in the first, along with an
additional OR for a unit increase in the risk factor if the risk factor
was greater than 0. The optimal risk relationship was selected based
on goodness-of-fit assessments as described below. Empirical curves
showing the relationship of risk of mortality to the risk factors in the
data were constructed using smoothed lowess curves. Then multiple
B-spline fits were overlaid on the empirical risk curves to visually
inspect the goodness of fit across all values of the risk factors. B-
splines have a complicated representation depending on the choice
of base functions. In this application B-splines were used only to
find the closest polynomial transformation that would optimize the
fit of the mortality model to each of the individual risk factors, for
example, to decide whether a quadratic relationship of dbh to mor-
tality was required, implying estimation of ORs for dbh and dbh2.
The Bayesian information criterion (BIC) was used for the final
determination of the optimal transformation, such as a linear versus
quadratic transformation. The BIC equals �2 � log-likelihood �
k � (log n), where k is the number of parameters in the model and
n is the sample size. Models with the smallest BIC were chosen as
optimal. The BIC chooses models with large maximized likelihoods
and penalizes models with many parameters. The models with the
smallest BIC are most likely to externally validate.

In sum, the steps above resulted in a generalized linear mixed
model with multiple risk factors, relating the probability �ijk of
mortality for tree j in plot i during observation period k to risk
factors measured at the beginning of the observation period as
follows

Logitijk � log� �ijk

1��ijk
� � �0 � offset�log�observation lengthik

5 ��
� �1	t
dbhij� � �2	t
Heightij� � . . . � �10	 t
SiteIndex

i
� � �k � �i,

where �0 is the global intercept of the model, �1 is a vector of
regression parameters corresponding to the chosen transform of dbh
[e.g., �1 would comprise two terms if the quadratic transformation
t(dbh) � (dbh, dbh2) was used] and similarly for �2 through �10.
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The offset function is the identity function, offset(x) � x. A 5-year
observation period receives an offset of 0, so that the remaining
parameters in the model hold for this period of observation. The
variable �k is a normally distributed random effect with mean of 0
and SD �year [N(0, �year)] that marks the calendar year of the start of
the observation period (one of 1954, 1959, 1969, 1982, 1984,
1985, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1999, or 2000). The random plot effect �i is similarly distributed as
N(0, �plot). The expression above implies that all 10 of the risk
factors (Table 1) appeared in the final model, but reduction was
performed to arrive at a parsimonious one that is more likely to be
accurate on external validation. This process is described next.

Selection of Risk Factors
Internal K-fold cross-validation was used to select the optimal set

of risk factors to include in the mortality prediction model. Because
a large number of models needed to be evaluated and to ease con-
vergence issues, only 29 of the 60 plots with mortality rates exceed-
ing 1% over all of their respective observation periods were used for
this portion of the analysis. Furthermore, because cross-validation
was used here for fitting the model and not for final model valida-
tion, K � 29 corresponding to the 29 plots represented in the data,
was chosen. Each of the 29 plots served in turn as a single test data set
with the remaining 28 plots combined as a training set. The cross-
validation scheme reflected the purpose of the model, which was to
predict 5-year mortality for a new tree in a new plot. Following
Skrondal and Rabe-Hesketh (2009), median prediction (which in-
volves setting random effects to their prior median of 0) rather than
mean prediction (which involves averaging over the distribution of
the random effects) was used. One reason for favoring median over
mean prediction was that it is more robust to outliers that may have
influenced the fitting of the normal distribution assumed for the
random effects. A second reason was that the objective function used
to evaluate goodness of prediction for the internal validation was the
AUC criterion, which like the median is a rank-based measure. A
final advantage of median prediction was that the predicted mortal-
ity had an analytical expression that did not require numerical or
simulation methods for evaluation. Secondary analyses (not shown)
revealed near negligible differences in predictions and AUCs from
the use of mean versus median prediction at this step of the analysis.
For each training set, a set of candidate models were fit, and param-
eter estimates were used to predict the mortality for trees in the
corresponding validation set. To reduce the influence of multicol-
linearity among the risk factors on stability of the model selection
process, Spearman correlation coefficients among the transformed
risk factors were computed. Models containing two risk factors with
correlations exceeding 0.75 in absolute value were dropped from
further consideration.

The predicted probability of mortality for a new tree was set
equal to �̂ijk � exp{logitijk}/[1 � exp{logitijk}], where logitijk is the
right-hand side of the logistic model equation above with plot and
calendar year random effects set to 0 and fixed-effect parameters
estimated from a fit of the candidate model to the training set. These
predicted probabilities were compared against the actual mortality
outcomes in the test set using the AUC. For each validation set, the
optimal model was chosen as that which achieved the highest AUC
averaged over the 29 training-test set pairs. Alternative validation
criteria that are combined measures of discrimination and calibra-
tion (closeness of predicted to observed risks), such as the Brier score
and pseudo R2, were also considered (Steyerberg 2010, Nagelkerke

1991). However, these generally led to the same selection of optimal
models as the AUC and consequently they were not reported.

Based on the average of cross-validation results from the subset of
29 plots, an optimal model was selected. The mortality risk predic-
tion from the final model was given by �̂ijk � exp{logitijk}/[{1 �
logitijk}], with estimated parameters from the fit of the model to the
entire data set of 60 plots. Confidence intervals for the prediction
were determined using the delta rule applied to the variance-cova-
riance matrix of all parameters estimated as part of the logistic re-
gression; see the Appendix for specific details. Because transforma-
tions and polynomial risk relationships complicate interpretation of
ORs, examples of risk plots with pointwise 95% confidence inter-
vals are displayed.

All statistical computations were performed with the R Statistical
Package version 2.14.2 (R Development Core Team 2012), includ-
ing the packages mgcv (Wood 2011), ggplot2 (Wickham 2009),
and ROCR (Sing et al. 2009). All statistical tests were performed at
the 	 � 0.05 level of statistical significance.

Results
Descriptive Analyses

For all risk factors, there was a statistically significant difference
between mortality and nonmortality observation periods (all AUC,
P � 0.001 except for CIConifer, P � 0.52) (Table 2). The average
dbh of trees that experienced mortality at the end of an observation
period was 7.2 
 4.5 cm (mean 
 SD) and was significantly less
than that of observation periods that did not result in mortality
(19.7 
 13.4 cm). Thus, the discriminatory power of dbh alone for
the prediction of tree mortality was high, with an overall AUC of
83.3%. The AUC of dbh was also consistently high among individ-
ual plots, with the lowest plot AUC equal to 67.9%. Similarly,
height was lower among mortality compared with nonmortality tree
observation periods (10.7 
 4.5 m versus 18.9 
 8.3 m), but it had
lower discriminatory ability than dbh (overall AUC, 80.0%; mini-
mum plot AUC, 58.8%). The other two dbh measures were also
reduced in mortality observation periods and had AUCs very similar
to that of dbh. The two competition indices, KKL (AUC, 82.5%;
minimum plot AUC, 61.8%) and CIOvershade (AUC, 84.7%;
minimum plot AUC, 55.3%), had the highest overall AUCs of all
risk factors, although their plot-specific AUCs dipped below that for
dbh (Table 2). The observed differences indicated that, as expected,
smaller-sized trees that experienced more competition for light from
neighboring trees or were more overshaded by other trees were at
increased risk of mortality. The remaining three competition indi-
ces, CILateral, CIIntra, and CIConifer, had the lowest AUCS (77.3,
71.1, and 50.7%, respectively) and for some plots had little to no
improved discriminatory ability for predicting mortality over ran-
dom chance (minimum plot AUCs, 51.0, 50.7, and 50.0%). The
SiteIndex was lower among nonmortality than mortality periods
(AUC 63.5%). The length of observation periods was slightly higher
for periods associated with mortality than nonmortality (AUC P �
0.001). Observation periods more recent in date were more likely to
be associated with mortality than earlier ones (AUC, 61.2; P �
0.001).

The optimal normality transformation method (stage I) resulted
in the following power transformations of the risk factors for
subsequent use in the risk models: dbh3/20, height2/3, KKL1/3,
dbhdom1/2, CILateral3/20, reldbhdom2/3, CIOvershade1/2,
CIIntra1/2, and CIConifer1/3.
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Individual Mortality Prediction Model
The optimal model chosen by the selection procedure (stage II)

was fit to data from all 60 plots with resulting estimates shown in
Table 3. Only the four competition indices, KKL, CIOvershade,
CIIntra, and CIConifer, appeared in the final model. These indices
are derived measures that use the geometric relationship of neigh-
boring trees in addition to tree size. Together they outweighed the
crude predictor dbh. Multiple entries of the same predictor, such as
KKL1/3 and KKL2/3, reflect the optimal transformation (power 1⁄3)
from stage I along with the optimal polynomial (degree 2) from
stage II. These multiple entries make interpretation of the ORs
complicated. Alternatively, interpretation of the effects of the four
predictors on risk can be most easily visualized in Figure 1, which
shows the combined effect of each predictor on risk after adjustment
for the effects of the other predictors on risk. Risk of mortality
increased with increasing KKL and increasing CIOvershade but
decreased with increasing CIIntra and displayed nonmonotonic be-
havior with increasing CIConifer. Trends, however, must be inter-
preted with caution. The number of events (mortality) is low with

the result that pointwise uncertainty bands are wide. The confidence
bands additionally widen in areas of the predictor space (x-axis) that
had few observations in the data set. Finally, variation due to calen-
dar year of the observation period (random-effects SD � 2.18) was
estimated twice as large as the variation due to plot (SD � 0.89)
(Table 3).

Mortality Predictions for New Trees
A fit of the overall model to all observations in the dataset yields

the following prediction for the probability of mortality during the
next 5 years for a new tree

Logit � 
 17.01 � 2.74 KKL1/3 
 0.38 KKL2/3 � 1.30 CIOvershade1/2


 0.03 CIOvershade 
 0.21 CIIntra1/2 � 1.80 CIConifer1/3


 0.38 CIConifer2/3 � 0.57 I(CIConifer � 0),

where I(CIConifer � 0) equals 1 if CIConifer has the value 0 and
equals 0 otherwise. ROC curves for this model applied to the entire
data set comprising 60 plots and to the individual 29 plots that had
a minimum mortality of 1% are shown in Figure 2. The overall
AUC of the prediction model was 91.5% and 6.8 percentage points
higher than the AUC of the top individual risk factor, CIOvershade
(AUC, 84.7%) (Table 2). However, this increase is optimistic be-
cause the same data were used to train the prediction model as to
evaluate it. AUCs for the 29 plots ranged from 69.1 to 100%.

Discussion
Using comprehensive data from a series of long-term research

plots, in this study, we have performed a detailed statistical analysis,
resulting in a prediction model for individual tree mortality. Al-
though the specific application was for the development of a predic-
tion model for use in the SILVA simulator, the modeling concepts
are general and could be applied to other species and prediction
applications in forestry.

There have been many individual tree mortality models devel-
oped for different species of trees. Table 4 lists a small set of con-
temporary models that included European or American beech as
one of the targeted species. All mortality models included dbh or
some measure of basal area, and all except one performed logistic
regression. The remaining model was based on the complementary

Table 2. Characteristics of trees in observation periods associated with mortality versus no mortality.

Nonmortality periods, mean (SD) �range�
(N � 20,447)

Mortality periods, mean (SD) �range�
(N � 604)

AUC (%) (P value)
(N � 21,051)

Plot-specific AUCs (%),
minimum, median, maximum

(N � 14,239)a

Dbh 19.7 (13.4) �0.8–90.9� 7.2 (4.5) �0.9–37.9� 83.3 (�0.001) 67.9, 86.6, 97.2
Height 18.9 (8.3) �1.4–43.9� 10.7 (4.5) �1.4–27.1� 80.0 (�0.001) 58.8, 83.3, 100.0
KKLb 3.2 (4.9) �0.0–60.5� 9.5 (9.2) �0.3–65.5� 82.5 (�0.001) 61.8, 82.1, 99.0
CIIntra 128.4 (73.4) �5.9–517.6� 184.6 (85.3) �14.6–444.4� 71.1 (�0.001) 50.7, 57.8, 82.7
CIConifer 13.7 (22.0) �0.0–200.4� 13.4 (20.4) �0.0–120.2� 50.7 (0.52) 50.0, 54.5, 80.9
CIOvershade 86.3 (71.4) �0.0–505.9� 188.7 (81.7) �21.9–461.4� 84.7 (�0.001) 55.3, 80.1, 97.4
CILateral 54.4 (60.6) �0.0–436.9� 10.9 (31.6) �0.0–257.6� 77.3 (�0.001) 51.0, 79.8, 100.0
dbhdomc 40.9 (22.8) �1.3–117.7� 19.5 (10.6) �1.3–62.8� 80.0 (�0.001) 58.8, 83.3, 100.0
Reldbhdom 0.5 (0.1) �0.2–1.1� 0.4 (0.1) �0.2–1.0� 74.8 (�0.001) 58.0, 78.3, 96.8
SiteIndex 14.7 (3.7) �5.5; 22.5� 16.4 (4.6) �5.5; 22.5� 63.5 (�0.001)
Observation length 5.5 (2.2) �3–28� 5.3 (1.6) �3–10� 50.6 (0.001) 50.0, 57.7, 80.1
Year of period onset 1993 (8.1) �1954–2000� 1995.8 (4.4) �1985–2000� 61.2 (�0.001) 50.0, 62.6, 80.1

AUC, the area underneath the operating characteristic curve, is the marginal effect of the risk factor for discriminating trees that would die by the end of an observation period
versus not and ranges from 50% (no better than flipping a coin) to 100% perfect prediction. P values for the AUC test the null hypothesis that the AUC � 50%.
a Only plots with a minimum mortality rate of 1% across observation periods were used to accurately estimate the AUC.
b One observation with KKL � 120.13 removed as outlier.
c Fourteen observations with reldbhdom � 1.15 removed as outliers.

Table 3. Estimates and significance results from the optimal pre-
diction model for tree mortality.

Log OR (SD) OR (95% CI) P value

Intercept �17.01 (1.46) 0.00 (0.00–0.00) �0.001
KKL

KKL1/3 2.74 (0.53) 15.48 (5.52–43.39) �0.001
KKL2/3 �0.38 (0.12) 0.68 (0.54–0.85) �0.001

CIOvershade
CIOvershade1/2 1.30 (0.16) 3.65 (2.67–4.99) �0.001
CIOvershade �0.03 (0.005) 0.97 (0.96–0.98) �0.001

CIIntra
CIIntra1/2 �0.21 (0.05) 0.81 (0.74–0.89) �0.001

CIConifer
CIConifer1/3 1.80 (0.51) 6.05 (2.23–16.42) �0.001
CIConifer2/3 �0.38 (0.09) 0.68 (0.58–0.81) �0.001
I(CIConifer � 0) 0.57 (0.77) 1.78 (0.39–8.02) 0.75

Random effects SD 95% CI
Plot 0.89 0.25–3.24
Calendar year 2.18 0.20–23.14

CI, confidence interval; I(X), effect for X versus not X.
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log-log link, which is quite similar to the logistic link. Similar to the
final model here, all models were based on a small handful of pre-
dictors proven to provide independent predictive information on
mortality. Parsimonious models are better protected against overfit-
ting and more likely to have better external validation performance.
The mortality models in Table 4 are more generally applicable than
those presented here because they are based on more easily calcu-
lated predictors, such as crown ratio or basal area of larger trees.

The initial mortality model in SILVA was presented by Pretzsch
et al. (2002) and was based on a small subset of the same data as for
this application (526 individual tree periods compared to 21,051
here). They similarly used logistic regression, but instead of using all
observation periods, they selected an equal-sized series of observa-
tion periods from trees that had survived to observation periods
where trees had died. This procedure mimics the efficient case con-
trol designs used in medicine for rare diseases. Their mortality
model indicated an increased risk of mortality for trees with smaller
dbh, with lower ratios of heights to dbh, with larger values of a site
index (estimated stand top height at age 50 years), and for larger
ratios of estimated tree basal area growth over the next 5 years to
dbh. In contrast to the model developed here, the original mortality
model required at least two observation periods per tree so that a
growth model could be used to project 5-year basal area growth.
Because our intent was to develop a single-tree single-observation
period model, we did not perform a comparison to the original
SILVA simulator.

Monserud and Sterba (1999) used logistic regression to develop
individual tree mortality models for the six major forest species of
Austria, one being European beech. They used a single 5-year re-
measurement period of a permanent plot network of the Austrian

National Forest Inventory. In addition, for use in an individual tree
stand growth simulator, their aim was to provide a general mortality
model to replace outdated yield tables that were still being used in
Austria. Their inventory recorded an overall 5-year mortality rate for
European beech of 4.3%, which is close to what was observed in this
study (2.9%), and they similarly elucidated the obstacles for accu-
rate modeling of rare events. To make their model generally appli-
cable in Austria, where they argued that most stands failed to meet
the definition of even-aged, they intentionally excluded site index
and age of individual trees from consideration, arguing that tree size
is already an integrated response to these factors. They hypothesized
that a hyperbolic dbh�1 transformation would more accurately
track the high mortality rates for small trees and gradually decreasing
mortality rates for larger trees. Thus, they implemented a more
subject-driven approach to transformation of risk factors than the
automated spline approach used here. Their transformation was
highly statistically significant, indicating the hypothesized nonlinear
relationship of dbh to mortality. The ratio of crown length to height
of the tree, as a measure of tree vigor, worked in tandem with a
measure, basal area in larger trees (BAL), which counted the stand’s
basal area from trees with a larger diameter than the individual tree
under consideration. Mortality increased as BAL in larger trees in-
creased and as crown ratio decreased.

Using permanent plot data from a mountainous region in Swit-
zerland, Wunder et al. (2007) focused on prediction models for
European beech that distinguished between growth-dependent and
growth-independent mortality. The growth-dependent models
used as risk factors the relative basal area increment between two
measurement periods divided by the basal area at the second
measurement period. Location site and dbh were included as

Figure 1. Risk of mortality in the next 5 years (solid lines) according to KKL (A), CIIntra (B), CIOvershade (C), and CIConifer (D) with
pointwise 95% confidence intervals (shaded regions). Plot A corresponds to an individual tree with a CIIntra value of 116.1, CIOvershade
value of 75.4, and CIConifer value of 0. Plot B corresponds to a KKL value of 1.42, CIOvershade value of 75.4, and CIConifer value of
0. Plot C corresponds to a KKL value of 1.42, CIIntra value of 116.1, and CIConifer value of 0. Plot D corresponds to a KKL value of 1.42,
CIIntra value of 116.1, and CIOvershade value of 75.4.
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growth-independent risk factors. Their data showed that trees that
died experienced lower relative growths in the period before death
than comparable time periods among trees that survived. A spline fit
for the relationship of relative growth to survival revealed a nonlin-
ear relationship. Among trees with smaller relative growth, the im-
pact of growth on survival was stronger than that among trees with

higher relative growth. At both sites in the study, trees with larger
dbh had a higher chance of survival. Their prediction model ob-
tained an AUC of 89.6% using bootstrapping on the same sample,
a procedure similar to that for the AUC reported here. Their AUC
was close to the AUC of the optimal prediction model obtained here
(91.5%).

Figure 2. ROC curves of the optimal risk prediction model based on observations from all 60 plots (thick black line, AUC, 91.5%) and
for each of the 29 plots with at least 1% mortality (thin lines, range between 69.3 and 100.0% for a plot with only one observed mortality).

Table 4. Previously published individual tree mortality models for European and American beech trees.

Reference Tree species Method Outcome Covariates

Monserud and Sterba
(1999)

Norway spruce
White fir
European larch
Scots pine
European beech
Oak

Logistic regression 5-year mortality 1/dbh
CR
BAL

Pretzsch et al. (2002) Norway spruce
Silver fir
Scots pine
Common beech
Sessile oak

Logistic regression 5-year mortality dbh
Height
Basal area growtha

Site indexb

Wunder et al. (2007) Deciduous trees,
Conifer

Logistic regression Status at end of intervals
Lengths were 5 yr and more

Log(dbh)
Relative basal area of a tree (to dbh)

Fortin et al. (2008) American beech
Yellow birch
Red maple
Sugar maple
Balsam fir

Binomial GLMM with complementary
log-log link

Plot random effects

5-year mortality dbh ( � dbh2)
Treatment
BA (BA2)
Tree vigor

Kiernan et al. (2009) Sugar maple
American beech
White ash
Bellow birch
Striped maple
Mixed conifers

Logistic regression
GEE modeling for intratree correlation

Different period lengths, length
( in years) used as factor
variable

dbh/BAL
No. of trees in plot
Length of observation

BA, stand basal area; GLMM, generalized linear mixed model; BAL, basal area of larger trees; CR, crown ratio (crown length/tree height).
a Expected basal area growth over the next 5 years.
b Estimated stand top height at age 50 years.
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The above prediction models did not incorporate random effects
to account for variable results among plots. In their prediction mod-
els for northern hardwood stands, which included American beech
in Quebec, Canada, Fortin et al. (2008) stressed the importance of
accounting for risk differences among plots that could not be ex-
plained by measured individual tree risk factors, such as soil and
weather conditions. They also stressed the need to adjust for differ-
ent intervals of measurement to account for changing climate con-
ditions. Both their interval and plot random effects were significant,
with SD estimates of 0.33 and 0.22, respectively. The analysis here
also revealed a bigger impact of calendar year (SD, 2.18) than plot
(SD, 0.89) contribution to unexplained variability. Magnitudes of
the SDs of random effects depend on the amount of successful
adjustment by the fixed effects in the model so that comparisons
across studies and models are compromised. Nevertheless, the fact
that both the Fortin et al. (2008) study and this study found larger
variability due to time than to plot provides evidence that global
changes due to climate may have a bigger impact than differences in
plots due to soil and water conditions. In terms of fixed effects, they
found that tree vigor, dbh, and basal area had an impact on survival,
with the effects of dbh and basal area being nonlinear in nature.
Their model entertained some common distance-independent com-
petition indices, including the sum of basal area for all trees with dbh
greater than that of the tree of interest, the relative position of the
tree in the cumulative basal area distribution and the ratio between
dbh and plot mean quadratic diameter. None of these had a signif-
icant impact on mortality. One possible reason for the lack of sta-
tistical significance of their competition indices is that they were
distance-independent, in contrast to those used in this study and
hence were not sensitive enough to detect competition. Another is
the large plot size (0.5 ha). In addition, their model included many
species, whereas this study focused only on European beech. Instead
of logistic regression, they used the closely related complementary
log link regression model that, like the model here, included a fixed
offset term to account for variable lengths of observation periods.

In their modeling of tree mortality after selection in upstate New
York for a multitude of species, including American beech, Kiernan
et al. (2009) contrasted ordinary logistic regression with a general-
ized estimating equation (GEE) approach that accounted for depen-
dencies between observation periods on the same tree. Both models
showed that mortality increased with the ratio of basal area to dbh,
with time of observation, and with number of trees in the plot and
gave similar predictions. The GEE approach had slightly lower pre-
diction error, in particular for smaller trees with dbh less than 15 cm.
By accounting for the dependence between observation intervals
rather than treating multiple observation periods from the same tree
as independent, the SEs of parameters estimated through the GEE
approach were larger, which the authors suggested yielded more
accurate statistical significance results. We have argued that, because
pooled logistic regression with rare events is asymptotically equiva-
lent to grouped Cox regression, one need not additionally adjust for
dependence between multiple observation periods on the same tree.
The Cox regression likelihood accounts for this form of depen-
dence. On the other hand, our model explicitly adjusted for spatial
dependence via the plot random effect, whereas the model of Kier-
nan et al. (2009) did not.

The brief review of the literature combined with the results of
this study show that a variety of statistical methods have effectively
been used for modeling the rare event of forest mortality. Mortality
models are designed with specific objectives in mind; these objec-

tives determine the risk factors used in the model. In contrast with
the other models, mortality models in this study were specifically
designed to capitalize on the many geometrical and distance-based
competition indices that are calculated with detailed forest inven-
tory data through the SILVA simulator. Thus, these distance-de-
pendent competition indices outweighed the effect of the crude
predictor dbh or other predictors of tree size. The mortality model
in this report was limited to European beech, one of the largest of
two species currently under observation as part of the Bavarian forest
network.

The median-based approach to prediction used in this applica-
tion (by setting random effects equal to their prior median of 0) gave
5-year mortality forecasts similar to those of the more commonly
used mean predictions in terms of multiple criteria, including dis-
crimination of mortality from nonmortality observation periods
(AUC) and squared error (Brier score). Median predictions provide
a nice alternative to mean predictions because they require no addi-
tional computation beyond fitting the model. However, median
predictions may not outperform mean predictions for longer fore-
casts, such as prediction of mortality over the next 25 years. The
equations developed in this report only apply to short-term mortal-
ity predictions.

Exploratory data analyses, including B-splines, along with graph-
ical techniques were used to arrive at the specific transformations to
optimize the logistic regression fit. It is worth remarking that
B-splines, which are complicated in form, were not an essential
ingredient but rather a choice for the model building. They were
used here as a nonparametric smoothing device to suggest the opti-
mal transformation (such as a quadratic transformation) of risk fac-
tors in the logistic regression equation. Simpler techniques, such as
the Box-Cox transformation could have been implemented to pro-
duce the same effect (Box and Cox 1964). The high specificity of a
data-driven approach to transformations incurs the risk that the
same model may not apply to other species or to the same species in
forests in other geographical areas. Of 10 potential predictors mea-
suring size and competition, our final model included only four
competition indices, raising a concern over multicollinearity. As
described in the Materials and Methods section, these indices had
correlations of less than 0.75 or they would not have been simulta-
neously allowed to enter the final model. The risk curves in Figure 1
demonstrate that the model relationships with the four competition
indices are as predicted. Nevertheless, there is a concern that any
amount of multicollinearity may affect external validation. There-
fore, we are currently repeating the modeling approach in Douglas
fir, another common species among the research plots used in this
analysis. We hope that the analytical formulas for the proposed
model will facilitate external validation among beech trees in other
forests that similarly record individual tree positions.
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Appendix
Competition Indices Derived from Vertical Competition Profiles

Many different types of competition indices have been proposed
previously, for example, those in Biging and Dobbertin (1992). The
SILVA simulator uses an additional set of indices that are rooted in
well-proven concepts and are based on vertical competition profiles.
The basis of the competition indices CICUM60, CIIntra, CIConifer,
CIOvershade, and CILateral is a procedure that is visualized in
Figure A1. The space around a tree of interest (shaded in gray) is
stacked with horizontal planes spaced at distances 1/20 of the tree of
interest’s height. An upturned cone with an opening angle of 60° is

placed with its tip in the footprint of the tree of interest. The inter-
section areas of the cone and the horizontal planes form a series of
circles that become larger with increasing distance from the forest
floor. Any neighbor tree that touches that cone is considered a
competitor. Thus, the left tree in the Figure A1 is not a competitor,
whereas the right tree is.

The three-dimensional crown models of Pretzsch (2001) are ap-
plied to measure the overlapped area (shown in dark gray in Figure
A1) of each competitor’s crown with the respective cone-intersec-
tion circle (shown in light gray). The relative proportions of the
overlapped areas to the cone-intersection circles are summed up
plane-wise, and then the profiles are stepwise integrated from their
topmost point down to the forest floor. The resulting integrals are
multiplied by 1/20 (one step width relative to the tree of interest’s
height). The integral value obtained at 60% of the tree of interest’s
height is the competition index CICUM60, a general measure of
competition. CIIntra is the component of CICUM60 that comes
from trees that belong to the same species as the tree of interest,
whereas CIConifer is the component resulting from coniferous
competitors, such as Norway spruce (Picea abies [L.] H. Karst) and
Scots pine (Pinus sylvestris L.).

To divide competition into the ecologically different aspects of
overshading and lateral constriction (Assmann 1961, Pretzsch
1992), the integral value at the tree of interest’s top is assigned to the
measure CIOvershade, because it comes from tree crowns above the
tree’s top, which cause overshading. The difference CILateral �
CICUM60 � CI Overshade is used as a measure for lateral compe-
tition, because large values mean that competition increases down-
wards from the top along the tree of interest’s crown, expressing
competition that does not come from overshading.

The final competition index KKL is described in detail in Pretz-
sch et al. (2002). A virtual cone is placed within a given tree with axis
equal to the tree axis and vertex in the crown of the tree. Any tree
whose top is inside this virtual cone is regarded as a competitor. For
any competitor tree, the angle � between the insertion point of the
cone and the top of the competitor tree is determined (see Figure 4

Figure A1. The principle for determining vertical competition pro-
files.
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of Pretzsch et al. 2002). This angle is weighted by the relation
between the crown cross-sectional areas of the competitor and tree
of interest. These areas are calculated according to crown models
and multiplied by species-specific light transmission coefficients
from Pretzsch (1992). The competition index is defined as the sum
of all competitor contributions

KKL
i
� �

j�1

n

�j

CCAj

CCAi
TMi,

where KKLi is the competition index for tree i, �j is the angle
between the cone vertex and top of competitor j, CCAj and CCAi

are the crown cross-sectional areas of trees j and i, respectively, TMj

is the species-specific light transmission coefficient for tree j, and n is
the number of competitors of tree i.

Calculation of Confidence Intervals for Mortality Predictions
Let � (x	�) � exp(x	�)/{1 � exp(x	�)} be the estimated proba-

bility of mortality based on the logistic regression model with fixed-
effects covariate vector x and vector of log ORs for fixed effects �.
Let V(�) be the estimated variance-covariance matrix of � that is
output of standard logistic regression software. Then a 95% confi-
dence interval for �(�) is given by

�� 
 x	� 
 1.96�x	V
��x�, �
x	� � 1.96�x	V
��x��.
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