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1. Introduction

I. I. Why dealing with numerical methods for describing forest structure and diversity in forest
management ?

There are at least two good reasons for considering aspects of structure and biodiversity in forest
management. First, there is a strong feedback relation between the spatial structure, e.g. the
horizontal arrangement of trees and tree species in a stand and the ongoing growth processes.
That means, that forest growth will be strongly determined by stand structure, but as growth is a
continuous process, it will itself change the structure of the stand (PRETZSCH, 1996). As
knowledge about forest growth is essential for sustainable forest management, we should always
incorporate structural aspects. The second important reason for considering structure is the
present worldwide development of forest management, moving away from pure timber
production towards multiple purpose forestry, regarding forests as managed ecosystems. Such an
approach is concerned by aspects of forest untilization in the same way as it is by nature
conservation and protection. As we can see from recent research work (AMMER et aI. , 1995;
BLAB, 1986; ELLENBERG et aI., 1985; HABER, 1982) the ecological value of forest stands as a
habitat for many plants and animals and its capabilities to withstand disturbances like insect
attacks or windthrow increases considerably with increasing structural and biological diversity.
We can therefore consider structure and diversity as multi-dimensional stand characteristics
determined by many single aspects. Some main aspects could be
• the horizontal pattern of tree distribution, with and without regard to tree dimensions,
• stand density,
• differentiation in height and diameter structure,
• species richness (diversity),
• the mixture of tree species.

As we try to characterize some of these structural properties of a forest stand, we could do it as a
verbal description as many experienced foresters in fact do. For example some descriptions for
different horizontal tree distribution patterns could be terms like ' randomly distributed' ,
' clustered' or ' regularily distributed'. The advantage of a linguistical approach like this is, that
for performing structural characterisation there is only experience needed, but not an expensive
data assessment. On the other hand the essential disadvantage of the linguistical approach is
evident, as the achieveable classification of stand structure is very vague and strongly depends on
the subjective opinion of the person who performs the classification. So if we want to compare
structural properties of different stands, characterized by different persons, they may be not
comparable at all. From this we can conclude for scientific studies of stand structure and its
relationship to stand development, management or ecological value, that there is need for
numerical methods which allow to express aspects of structure in a quantitative and therefore in
an objective and comparable manner. Various research work on this problem has been done
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(CLARK AND EVANS, 1954; PIELOU, 1975, 1977; RIPLEY, 1977, 1981; UPTON AND FINGLETON,
1985, 1989; PEl\'TITNENet aI., 1992; STOYAN and STOYAN, 1992; DEGENHARDT, 1993; QUEDNAL
and FROHLICH, 1994; PRETZSCII, 1997) . So, we can rely on some well-tried methods te
characterize structure and diversity of forest stands.
Besides many other purposes those methods give us the possibility to find out by scientific
analysis, how stable forests are structured and which management concepts are suitable te
achieve stable structures in managed stands.

1.2. Aim of this case study

The aim of this case study is to show how structure and diversity in forest stands can be
characterized by numerical methods. Therefore five methods are chosen exemplarily. For the
calculations required, the single tree based stand growth simulator SILVA, developed at the
CHAIR OF FOREST YIELD SCIENCE of the MUNICH UNIVERSITY (PRETZSCH, 1992) is used in its
latest version. This computer program cannot be used only as a tool for forest growth projectior
but also for providing information of timber amounts, the economic value and structural aspects
of a given stand. By name, the methods we use are the aggregation index R by CLARK ANI:

Ev ANS (19 54), the segregation index S by PIELOU (1977) and the species profile index A b)
PRETZSCH (1996), which is a modification of the well known SHANNON-index (SHANNON 1948).
Additionally, we estimate pair- and mark correlation functions as proposed by STOYAN and
STOYAN (1992), PENTIlNEN et al. (1992) and DEGENHARDT (1993).
To show how these methods perform when applied to totally different types of forests , they are
calculated for a complex natural tropical forest stand on the one hand and one even aged,
uniform Teak stand on the other hand. As SILVA could be parameterized for growth prognosis in
pure Teak stands (KAHN, 1998) there was no sufficient database to calibrate the simulator for
growth prognosis in natural tropical forest stands, however. In thi s study therefore, SILVA cannot
be used for stand growth prognosis, but only to calculate numerical information about the statu!
quo of the two examined forest stands.

2 The Data

2.1. The Natural Forest Stand

The natural forest data used in this study has been collected by Mr. H. WEYERHAEUSER, who is
responsible for silviculture research in a National Park in Thailand. The research area is adjacent
to the western border of Thailand with Myanmar. The forests in the project area consist mainly 01
two types, the dry dipterocarp forest (DDF) in the lower elevations and the mixed deciduous
forest (MDF) in the higher and mostly more fertile locations. For this case study a forest stand 01
the MDF type has been chosen to represent the high structural diversity of such stands. The
research plot has the size of 2 ha. 70 different tree species are represented in this plot out of 180
species which can be found in this forest type .
For this case study tree species were aggregated by botanic family and comparable ecology to ten
groups, which were treated like single species in the further proceeding. Although SILVA can
deal with at maximum 20 species, thi s clustering was done to provide for every species group a
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tree number high enough for gett ing interpretable results. Anyway, the tree numbers within these
groups differ in a wide range: while the Terminalia group counts for 215 trees, the Afzelia 6'TOUP

consists of only 18 trees (figure I). The total amount of trees available for the natural forest is
787. Based on these data, a SILVA input file was constructed for further analysis. An impression
of the horizontal tree distribution by species groups is given by figure 2.
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Figure I : The ten tree species groups constructed and the tree numbers available for analysis
of the natural forest data.
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Figure 2: Positions of tbe single trees in the natural forest plot, marked by species group.

2.2. The Teak stand

During the DSE training course, three sample plots in Teak plantations were measured by the
course participants. The stands are located in the Mae Moh region in Northern Thailand and
grow under typical site conditions for this region. Stand ages were 12, 30 and J00 years at the
time of measurement For our analysis the 12 year old plot was chosen because it provided with
55 trees the greatest sample size of all measured plots. The parameters measured were dbh, total
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height, height of the crown base, crown radii and x-y-coordinates of every tree. For more details
see the articles by KAHN in this book. Like for the natural forest data, a SILVA input file was
constructed to make the capabilities of this program usable for our analysis. Figure 3 gives a
visual impression of the horizontal tree distribution in the 12 year old Teak stand. As can be seen,
the plant rows are still quite visible.
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Figure 3: Positions oftbe single trees in the 12 year old Teak stand.

3. Methods applied

3.I. Single-Number-Indices

The term ' single-number-indices' stands for methods which create one single number «
characterize a certain structural aspect Such indices provide information at a highly condense:
degree and are, in general, easy to interprete. Their disadvantage is, that this aggregated viev
may conceal some relevant structural information. As examples for single-number-indices WI

apply the aggregation index R by CLARK AND EVANS (1954), the segregation index S by P1ELOt
(1977) and the species profile index A by PRETZSCH (1996).

3.1.1. Aggregation Index by CLARK andEVANS (1954)

The aggregation index R by CLARK and EVANS (1954) is used to characterize the horizonta
distribution pattern of trees in a stand by the so-called method of the nearest neighbour. Thi
calculation of R starts with an estimation of the average distance of a tree to its neares
neighbour, rUp"'led , which would be expected, if the trees were randomly (poisson-) distribute,

over the stand area:

86

i i



As this formula does not take into account the finiteness of experimental plots, r.~.. can be
slightly corrected for this purpose, using a proposal by DONELLY (1978) as it is also performed by
the program SILVA:

I P P

~
+ 0.05 136 8 '- + 0.04 1 '-3

N N -
2 . - N2

A

For more details see DONELLY (1978), PRETZSCH (1993), QUEDNAU and FROHLICH (1994).
The second input parameter needed for the calculation of R is the observed mean distance of a
tree to its nearest neighbour, r"'-', which can easily be found by:

N

In
- 1",,1
r ah--J= - -

N

The aggregation index R is now calculated as:

r ohserved
R=

Fexpected

The variable names used above are:
r , = distance of tree i to ist nearest neighbour in m,
N = Number of trees found in the observed experimental plot,
A = Size of the experimental plot in m',
P = Perimeter of the experimental plot in m.

The theoretical Range of R lies between 0, which represents maximum aggregation, and 2.1491,
which indicates a hexagonal distribution pattern. Values around 1.0 indicate random distribution.
So, if a value ofR is less than 1.0 we observe a tendency away from random distribution towards
aggregation. If we find Values greater than 1.0 there is a tendency towards a regular spatia l
pattern. These tendencies can be tested for statistical significance, for details hereon see
PRETZSCH (1993), QUEDNAUAND FROHLICH (1994).

3.1.2. Segregation 1ndex S by PIELOU (1977)

Another important aspect of stand structure, the segregation of species, can be quantified using
the segregation index S by PIELOU (1977). Like the aggregation index R, it is relies on the
method of the nearest neighbour. The Index S was originally designed by PIELOU for being
applied to a two-species mixture. The idea is to estimate the number of mixed-species next
neighbour pairs tlexpected c which we would expect , if the two tree species would be distributed
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n ohserved
s =I

Flexpeaed

Sum of Row

n
m

Nw

Species 2
b
d

v

Next neighbour
Species 1
a
c

Species 1
Species 2
Sum of column

N ·(b+c)
S = I - - --'-----'-

v'n+w'm

Tree of interest

This table can be used to calculate S in the following manner:

Table I: Fourfold table providing the information needed for calculation of the segregatio
index S. The variables a,b,c,d,m,n,v,w,N indicate the numbers of next-neighbour tree-pair
which have the properties shown bv the row and column heads.

independently of each other. This number can be compared to the number of mixed-species pai
observed in fact, which we call tlobserved , So, the Index S is calculated as follows:

All information necessary to find S for a given stand can be drawn out of a common fourfo!
table (Table I) .

j:'
, l'

I,
r ::':

The range of values which can be taken by S is [-1;+ I]. If S is less than zero, we observe
tendency towards an association of the two examined species . If S is greater than zero it indican
a tendency towards a spatial segregation of the tree species. Values of S around 0 indicate th
the two tree species are distributed independently of each other on the sample plot. Tl
tendencies found by calculation of S can be tested statistically. For details on test statistics se
PRETZSCH (1993) and also QUEDNAU AND FROHLICH (1994).
When S is applied to the natural forest data, we faced the problem, that we had to deal with te
tree species. The Program SILVA is therefore designed to calculate S for every tree species in
way, that the segregation of this species is calculated in relation to all trees, which belong 1
another species. So the segregation index given by SILVA for one species in a mixed fore
stand with more than two species expresses the segregation of this species alone and all oth
species on the other hand. As it is not possible per definition to calculate S for a pure stand 1iI
our teak stand examined in this study, we define S to be 1 for pure stands, assuming that a pw
stand is at maximum segregation.

3.1.3. Species Profile 1ndexA by PRETZSCH (1996)

The third index applied in this study was developed by PRETZSCH (1996) to characterize tl
species profile of a forest stand. The more species are found in a stand and the more they a1
distributed over three height layers of the stand as defined below, the greater the value of th
index, called A, will be. A is therefore an index which takes into account biodiversity ar
vertical structure of the examined forest stand. The calculation of A is based on the well knov,
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diversity index H of SHANNON and WEAVER (1948), which has been successfully applied in
biological and ecological science. To give a better understanding of the index A it seems to be
reasonable to first discuss the original SHANNON-index H, which is calculated as follows:

s
H= - Ip,· lnp,

;=1

The variable names used are:
S = number of Species found in the examined stand

n,
Pi = frequency of Species i in the whole stand; Pi = N

n, = number of trees belonging to species i
N = total number of trees in the examined stand.

The idea of H is, that rare species contribute to a greater extent to biodiversity of an ecosystem
than dominant species. This concept is realized by weighting the frequencies of the species by
their negative logarithms. H will be the greater, the more species we find in a population and the
more equal their frequencies are. If we find only one species, H will be zero, indicating the least
diversity possible.
Understanding the concept of the SHANNON-index H, we can proceed introducing the species
profile index A. The first step to do is to divide the examined stand into three height layers,
called ' zones' further on. If we assume the height of the highest tree in the stand to be 100%,
zone I extends from 100% down to 80%, zone 2 from 80% down to 50% and zone 3 from 50%
down to the forest ground (figure 4). If the tip of a tree is located in one of these zones, we
consider the tree belonging to this zone. When the SHANNON-index H is applied to species and
height zones at the same time, we get the species profile index A:

s z
A =-IIp,; ·lnpij

j ",l I"'I

The variable names used are:
S = number of species in the examined stand
Z = number of height zones
N = total number of trees in the examined stand,

n o<
Pij = frequency of Species i in the height zone j stand; pij = ;

nij = number of trees of species i in height zonej.

IfPij for one height zone j will be zero, the logarithm ofPij is not defined. So, if this occurs, we
define the contribution ofSpecies i in height zone j to the value of index A being zero. For a pure
species, single-layered stand A will be zero. A will increase considerably, if trees spread over
more than one height zone and if additional species will be introduced. As PRETZSCH (1996)
states, the index A quantifies, what is often understood as ' rninglement structure' in forest
management practice. Figure 4 illustrates the preceeding explanati ons.
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3.2. Pair- and Markcorrelation-Functions

3.2.1. Pair Correlation Functions

Stand 2 A =0.60Stand 1 A = 1.72
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Figure 4: Behaviour of species profile index A (PRETZSCH, 1996) for one multi-layere
(stand 1) and one single-layered two-species stand (stand 2).

In contrast to the single-number-indices we dealt with above, the methods shown below do ne
aggregate structural information to one single number. We get a series of numbers which can b
interpreted as estimated values of functions with certain properties. These methods give a muc
more detailed view on structural aspects than single-number-indices do, their theoretics
background and their handling is much more complex, however. In the following text w
introduce the so called pair- and mark correlation functions as proposed by STOYAN and STOYAJ

(1992) and DEGENHARDT (1993).
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The task of pair correlation functions is similar to the single-number aggregation index R b
CLARK and EvANS (1954). Like this index, pair correlation functions regard the horizontr
distribution of trees in relation to a random distribution without considering their dimension:
Pair correlation functions enable one to decide, whether pairs of trees at a certain horizontr
distance occur more or less frequently than we would expect for a random distribution. Thes
pairs of trees are not automatically next neighbour pairs as we looked for calculating the indice
Rand S. They are just the pairs of trees which have a certain distance , no matter if they are firs
second, third or nth neighbours.

Definition and Properties ofPaircorrelation-Functions

We imagine the horizontal distribution of n trees in an area Was one realisation of an isotropi
and homogenous stochastic point process (see STOYAN and STOYAN, 1992). The intensity ofthi
point process is called D and can be estimated as follows:
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where n is the number of trees found in the area Wof the size A. Now consider two circles Cl and
Cl with infinitesimally small areas dF}, dFl . The distance of their centers is called r . So, the
probabil ity P(r) to find one stern-center-point in each one of these two circles can be denoted as:

P(r ) = g(r )· J. ·dF, . J. . dF,

The function g(r) is called pair correlation function.

The paircorrelation-function has some typical properties:
if g(r) > I, then the number of tree-pairs having the distance r is greater than expected for a
random (Poisson-) distribution . If g(r) = I, then the number of tree-pairs with the distance r
equals the expected number for a random distribution . If g(r) < I, then we observe a lesser
number of tree-pairs at the distance r as we would expect for a random distribution. So, if the
distribution of all trees in the area W would be a realisation of a Poisson-process, g(r) would be I
for every r. For big values of r, g(r) comes close to the value I in any case.

Estimation of Paircorrelation-Functions

If we want to estimate g(r), we apply the following formula for every r > 0 we are interested in:

(I)

n
kh

O(r)

The symbols used are:
g(r) = estimator for g(r),
qi, qj = Stem center points of tree i and). They have the coordinates x.j., andxj,Yj,

respectively,
Ilq, qjll = Euclidian distance ofqi and qj' calculated by

V.- q,l =~(x.- xJ + (Y.- yJ '
= number of trees observed in the area of interest,
= core-function as explained below,
= edge bias control function as explained below.

The core function kh is used to smooth the estimated paircorrelation-function . The idea of kh is to
include these pairs of points whose distance is more or less equal to r, but to weight them the
more, the nearer their distance is to r. STOYAN and STOYAN (1992) recommend the so-called
EPANECNlKOV-core:

r1...(I_.C-i if - h :S t :S h
k,(t)= ~ 4h h' )

l 0 else

The parameter h symbolizes the band-width of the core-function. The choice of h is considered to
be more important than the choice of the type of core-function itself In any case, h should be
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Figure 4: Behaviour of species profile index A (PRETZSCH, 1996) for one multi-layere
(stand 1) and one single-layered two-species stand (stand 2).
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In contrast to the single-number-indices we dealt with above, the methods shown below do nc
aggregate structural information to one single number. We get a series of numbers which can b
interpreted as estimated values of functions with certain properties. These methods give a mue
more detailed view on structural aspects than single-number-indices do, their theoretice
background and their handling is much more complex, however. In the following text w
introduce the so called pair- and mark correlation functions as proposed by STaYAN and STa YAJ

(1992) and DEGENHARDT (1993).

3.2.1. Pair Correlation Functions

The task of pair correlation functions is similar to the single-number aggregation index R b
CLARK and EvANS (1954). Like this index, pair correlation functions regard the horizontz
distribution of trees in relation to a random distribution without considering their dimension!
Pair correlation functions enable one to decide, whether pairs of trees at a certain horizonts
distance occur more or less frequently than we would expect for a random distribution. Thes
pairs of trees are not automatically next neighbour pairs as we looked for calculating the indice
Rand S. They are just the pairs of trees which have a certain distance, no matter if they are firs'
second, third or nth neighbours.

Definition and Properties of Paircorrelation-Functions

We imagine the horizontal distribution of n trees in an area Was one realisation of an isotropi
and homogenous stochastic point process (see STa YAN and STaYAN, 1992). The intensity of thi
point process is called 0 and can be estimated as follows:
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where n is the number of trees found in the area Wofthe size A. Now consider two circles C, and
Cl with infinitesimally small areas dFj , dFl . The distance of their centers is called r . So, the
probability P (r) to find one stem-center-point in each one of these two circles can be denoted as:

P(r )= g( r ) · )' .dF, · )' ·dF,

The function g(r) is called pair correlation function .

The paircorrelation-function has some typical properties :
if g(r) > 1, then the number of tree-pairs having the distance r is greater than expected for a
random (Poisson-) distribution. If g(r) = 1, then the number of tree-pairs with the distance r
equals the expected number for a random distribution. If g(r) < 1, then we observe a lesser
number of tree-pairs at the distance r as we would expect for a random distribution. So, if the
distribution ofall trees in the area W would be a realisation of a Poisson-process, g(r) would be 1
for every r. For big values ofr, g(r) comes close to the value 1 in any case.

Estimation of Paircorrelation-Functions

If we want to estimate g(r), we apply the following formula for every r > 0 we are interested in:

(1)

The symbols used are:
f:( r) = estimator for g(r),
q.; qj = Stem center points of tree i and). They have the coordinates x . j., and Xj,Yj,

respectively,
Ilq,-qjll = Euclidian distance ofq, and qj, calculated by

y, -qJ =~(r,- rJ + ~,-yJ,
11 = number of trees observed in the area of interest,
kh = core-function as explained below,
o(r) = edge bias control function as explained below.

The core function kh is used to smooth the estimated paircorrelation-function. The idea ofkh is to
include these pairs of points whose distance is more or less equal to r, but to weight them the
more, the nearer their distance is to r. STOYAN and STOYAN (1992) recommend the so-called
EPANECNIKOV-core:

r.2..(I--C.i if - h;; /;; h
k,(/)= ~ 4h h ' )

l 0 else

The parameter h symbolizes the band-width of the core-function. The choice of h is considered to
be more important than the choice of the type of core-function itself In any case, h should be

91



I .

I '
I
I
1
I
1 ;.
j !.

I
j,

I
I;
I •
~- .,

kept dependent on the intensity of the point process as can be done according to STaYAN and
STaYAN (1992):

h ~ c -x '" with a recommended range for c = 0.1 ... 0.2.

O(r) is needed to avoid plot edge bias, assuming that the point-process observed will be realized
also outside the borders of W The function O(r) delivers the expected value for the intersection
area of W and a copy of W, which is dislocated by a random vector having the length r . FOl
rectangular areas, this function can be written as follows (STa y AN and STaYAN, 1992):

.-,

r 2r r '.1Z" - 2x- - + - '
1 fJ fJ '
1 . ( I) 112. arcs"\- - - - 2(r - u);

r<r)~ i r fJ

12 . ( fJ -UV) 2u 2v fJ l + r ' .
I .arcs"'\.------;0) + + jj - - p ,
lo;

0 :5 x5. 1

1<r"p

p<r <~p' + 1

with

I
I·,
I .

Before starting an estimation algorithmus for g(r) based on formula (1), three values have to bl
determined. These are the lowest and the greatest r, rmin and rmax, for which g(r) shall br
estimated. Finally, the step-width Or, which is the distance of the estimated values for g(r) on thi
r-axis, must be known. According to D EGENHARDT (personal communication) good results car
be obtained by settings like in the following example:

,
rmm = d~ - 0.001· £' , where dm;n is the lowest tree-distance observed,

..!
T
ma

:::: 1.5·2 :Z ,

sr rID1l?j - rQ .

200

The estimation algorithmus now has to start by estimating g(r) according to formula (I ;
beginning with rmm as r, after that incrementing rmin by Or estimating g(r) for the new r and SI

on, until rmax is reached. After that, g(r) can be plotted against r. The graph obtained is used t,
interprete the estimated paircorrelation-function. Two examples for typical shapes of g(r) ar
depicted in figure 5.
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Figure 5: Typical shapes for empirical paircorrelation-functions. Left chart: clustered tree
distribution, right chart: regular tree-distribution.

The left graph in figure 5 shows a typical pair correlation function for a clustered tree distribution
as we observe the highest values of g(r) at low tree-distances r. That means, tree pairs with
distances around I up to 3 m occur far more often than they would do if trees were distributed
randomly. The right graph shows g(r) as observed for considerable regular patterns. At distances
up to I m g(r) is 0, so we do not observe tree-pairs at these distances at all. So we can conclude,
that the observed tree distribution is a realisation of a so called "hard-core" process. At distances
of approximately 4 m g(r) shows a sharp maximum which can be interpreted in the way, that
most next-neighbour-pairs are found at this distance. The following local minimum is due to the
space beween first and second-next neighbour while the next local maximum at somewhat 9 m
occurs as most second-neighbour-pairs have this distance.

3.2.2. Mark Correlation Functions

Mark correlation functions have similar properties to the pair correlation function discussed
above. Compared to the latter they regard not only the coordinates of the examined objects, but
also a so-called mark which is attributed to every object describing the realisation of a certain
property for every object. Applying this concept to a given tree stand, one could consider any
tree-dimension as a mark, for example the dbh. A mark correlation function shows for point-pairs
of a given distance r, if and how the average dbh-combination of such point pairs deviates from
the expected one for an independent spatial distribution of the dbh. For example, considering an
older forest stand, we could expect to frequently find pairs of trees which both have big dbh's
only at certain distances, considerably greater than the minimum tree distance, as a result of
competition processes.

Definition and properties of markcorrelation-functions

The characteristic element of mark correlation functions is a non-negative test function f (mlomz}
which is dependent on the marks m, and m, of the points q j and q2. There are many possibilities
to construct such test functions (see STOYAN and STOYAN 1992), but when regarding object
dimensions, as we do here, the function
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proves to be suited very well (see PENTI1NEN et al. 1992). This function takes highest values,
when both marks are big. Consider again two infinitesimally small circles C, and C2 with the
areas dF, and dF2. The distance between their centers is r. Consider Z(r} as a random variable
which takes the value f (m"mzJ ifthere is a point in both circles and the value zero otherwise. The
expected value for Z(r}, £ (2(r}) can be denoted then as follows

£(Z(r)) ~ k/(r) ' g( r )' '''' ' MF; ' }.dF,

where kjr} is called the mark correlation function, g(r} is the paircorrelation function as defined
above. Additionally, we have to take into account the expected value for f(m" mzJ if the mark!
would be distributed independently, which is, in our special case, when f (m"mzJ ~ m, x mi. the
square of the arithmetic mean of all marks m" . 0 denotes, as showed above, the point density ot
the observed point process. kjr} can be regarded as the expectation for f (m" mzJ, standardized b)
",' , with the constraint, that there is one point located in each one of the two circles Cl and C2.

The mark correlation function takes values greater than I if the expectation for f(m"mzJ at ~

given distance r is higher than we would expect if the marks were distributed independently. I
kjr} takes values lesser than 1, we would expect a greater average of f (m" mzJ if we had a,
independent mark distribution. For completely independently distributed marks we get an overal
value of 1 for kjr}. Like the pair correlation function the mark correlation function approache:
the value 1 for big values of r. To avoid non-defined arithmetical operations, we define kj r;
being zero if there are no pairs of points found at a given distance r.

Estimation of Markcorrelation-Functions

kjr} can be estimated by applying the following formula for every r > 0 which is of interest.

d
i
I

f.±m,·m).k,( r - W) -q,b
""I J"'I

; -aj

",'.:i:f. k,(r -~j - q.ll
1" 1 1' '' 1

J'~i

r » 0
(2)

'>

Like above the symbols used are:
kf (r) = Estimator for kjr},

qi. qj = Stem center points of tree i andj . They have the coordinates Xi, Yi and Xj, yj,
respectively,

Ilq,- qAI= Euclidian distance ofqi and qj, calculated by

~, - q,l =~(r. - rJ + <t.-yJ '
n = number of trees observed in the area of interest,
k" = core-function as explained above,

The estimation procedure is identical to the one for the pair correlation function, when formu
(2) is used instead of formula (I ). The recommendations for the choice of r mill> r max and Or al
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also the same. How to interprete mark correlation functions is shown below, when they are
applied to our example stands.

4. Results

4.1. Aggregation Index R by CLARK AND EVANS (1954)

Figure 6 shows the results obtained for the aggregation index R. In the natural forest all groups of
species regarded isolated from the others show a more or less evident clustered distribution, as all
values obtained for R are below 1. The groups Croton and Aftelia seem to be clustered in a most
pronounced manner. Also, all trees in the natural forest without dividing into species groups
show a considerable tendency to an aggregated distribution, which is, however, not as
pronounced as at nearly all species regarded seperately. Unexpectedly the index value 0.90 for
the 12 year old planted Teak stand does not show a tendency towards a regular distribution.

Aggregation Index by Clark and Evans
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Figure 6: Calculated values of the aggregation index R for the 12 year old teak stand and the
tree species groups and all species together in the natural forest. Index values below 1 show
a tendeney towards an aggregated pattern, index values above 1 indicate a tendency
towards a regular tree distribution pattern. N means the number of trees used to calculate
the index expressed by the corresponding bar.

4.2. Segregation Index S by PIELOU (1977)

The results obtained by application of the segregation index S can be seen in figure 7. For Scan
theoretically reach values between -1 and +1 the tendencies indicated seem not to be very
pronounced. Anyway, some differences between the single species groups can be observed. S
values for most groups are more or less close to zero, but except for Pterocarp us, Spondias and
Dalbergia they show a tendency towards segregation from trees belonging to the other species.
The most evident tendency towards segregation can be observed for Croton and Gardenia which
show S-index values of 0.13 resp. 0.19. The index value for the pure Teak stand is 1 per
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definition, but not shown in figure 7 in order to pronounce the differences between the spec
groups in the natural forest Comparing figure 6 and figure 7 it may be seen, that the hig
aggregated species groups Croton and Gardenia, as revealed by the aggregation index R seerr
be segregated from other species to the highest degree.

Segregation Index S by Pielou (1971)
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Figure 7: Calculated index values for the segregation index S. Negative values express
tendency towards association of the subject species groups with trees belonging to oth
species gro ups. Positive values show a tendency towa rds segregation of the regarded spec
gro up from trees belonging to the other groups.

4.3. Species Profile Index A by PRErZSCH (1996)

As can be seen in figure 8 the species profile index A behaves quite differently for the pure te
and the natural forest stand. While the teak stand data lead to an index value of only 0.85, we I
an A-index of 2.74 for the natural forest This was expected, considering the multi-layen
multispecies-built natural forest in comparison to the mono-layered pure teak stand.
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Species Profile Index A by Pretzsch (1996)
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Figure 8: Obtained index values for the species profile index A. Higher index values indicate
higher hiodiversity and more pronounced vertical distribution of the trees.

4.4. Pair- and Mark Correlation Functions

Although we introduced the concepts of pair- and mark correlation functions separately from
each other before, it seems here quite reasonable to interprete their results obtained for our data
together. Calculating the mark correlation functions we used the dbh as mark and [(ml ,m2) =

m, x m2 as test function. Figure 9 shows the empirical functions for the 12 year old teak stand
data.
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Figure 9: Empirically found pair- (left chart) and mark correlation function (right chart) for the
12 year old teak stand.

The pair correlation-function gives a clear sight on the horizontal tree distribution of the 12 year
old teak stand. The point process realized seems to be a more or less "hard-core" one, as we do
not observe considerable numbers of tree-pairs at distances below I m. Further, the pair
correlation function shows a first peak for distances about 2 m and a second, even higher peak
for distances about 4 m. This reflects very well the planting pattern applied when the plot was
established 12 years ago, maintaining tree distances of 2 m within the rows and 4 m between the
rows. In the meantime, thinning and competition led to a disappearance of many trees at low
distances from their next neighbours (see figure 3), so we observe the 4 m peak being much
higher than the 2 m peak, as most of the trees have a first or second neighbour at a distance about
4 m, but not all trees have a neighbour at 2 m. In general, the pair correlation function indicates -
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in contrast to the aggregation index R calculated before- a quite regular pattern. This appare
contradiciton will be discussed below.
The mark correlation function has only one single peak at radii about 4 m which indicates I

average dbh-combination greater than expected for dbh ' s distributed independently. At low
radii we observe the opposite, as the diameter-products of tree pairs decrease as their distanc
decrease. This means, that pairs of thick, dominant trees have not establ ished themselves
distances much lower than 4 m. The mark correlation function' s peak for distances about 4 m
not only maintained by competition effects, but also by the planting pattern, evidently. Tree pai
at lower distances seem to consist mostly of smaller, non-dominant trees in the stand.

Regarding the natural forest data , it would be beyond the limits of this paper to show the pai
and mark correlation funct ions for all observed species groups. So, we limit ourselves .
interprete these functions only for all species together and some selected species groups showir
interesting or typical patterns.
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Figure 10: Empirically found pair- (left chart ) and mark correlation function (right chart) for a
species of the natural forest stand.

The pair correlation function for all species of the natural forest stand (figure 10, left char
indicates a typical clustered tree distribution pattern as detected also by the aggregat ion index I
Pairs of trees at distances between nearly 0 m and about I m are far more abundant than \\
would expect for a random pattern. Above distances about I -2 m the curve approaches very soc
a constant value of I, indicating no more correlation between pair-distance and abundance (
pairs. Applied to the same data, the mark correl ation function shows a very balanced behavioi
in general. Although its values for distances lower than 7 m are somewhat lower than 1, th
effect cannot be considered very sharp compared to the planted teak stand (figure 9, right chart
This means, that tree dimensions in our natural forest stand are distributed independently to
certain degree, including considerable numbers of pairs of domin ating trees even at very 10·
distances. Very similar pair- and mark correlation functions were obtained for the most abundat
species groups in this stand, Terminalia and Lagerstroemia as expected.
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Figure 11: Empirically found pair- (left chart) and mark correlation function (right chart) for the
Gardenia species group of the natural forest stand.

Regarding the Gardenia species group (figure 11 ), the pair correlation function indicates an even
more evident clustering than observed for all species (figure 10). As we remember, the
aggregation index R revealed the same tendency. The mark correlation function, however, forms
an evident peak around tree pair distances of 20 m. So, we can conclude that strong Gardenia
trees do occur mostly at distances about 20 m in the natural forest stand.
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Figure 12: Empirically found pair- (left chart) and markcorrelation function (right chart) for the
Vi/ex species group of the natural forest stand.

Compared to Gardenia the Vi/ex species group obviously shows a totally different behaviour
(figure 12). Although the pair correlation function indicates a considerable clustering which
could also be shown by the aggregation index R, the mark correlation function forms a totally
different shape. Vi/ex tree-pairs, where both trees have considerable diameters, occur at the
smallest distances observed. This may be due to ecological peculiarities, but also to trees having
a bifurcation lower than the dbh measurement height, from which two dbh's and two stem center
points are reported. At distances around 5 m we find a sharp minimum indicating only pairs with
each tree having small diameters. For distances greater than 5 m the function raises and finally
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approaches values around 1. Back to the pair correlation-function we can see another interest
aspect of the horizontal tree distribution of Vitex: at distances about 8 m and 16 m there are t
slight peaks whose extent is partly concealed by the scale of the g(r) -axis. These 'wav
indicate, that, in addition to the clustering at low distances there is a certain regularity at higl
distances, perhaps in the pattern, the clusters are distributed according to. Such effects eviden
cannot be detected using single number indices.
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Figure 13: Empirically found pair- (left chart) and markcorrelation function (right chart) for 1

Pterocarpus species group of the natural forest stand.

As last species stratum we analyse the Pterocarpus group (figure 13). Similar to the young Te
stand but not as pronounced, we observe two sharp local maxima of the pair correlation functn
the first one at about 12 m, the second and even higher one at about 25 m. This indicate!
considerable regular tree distribution pattern. As the maxima are less sharp as they are for 1

young Teak stand, we can conclude that the degree of regularity is lower for the Pterocar]:

group. In contradiction, the aggregation index R calculated for Pterocarpus group does I

indicate regularity. A rather similar contrast between this single-number index and the p
correlation function was observed already for the Teak stand. The mark correlation functi
forms a similar shape as it does for Vitex group (figure 12). At the lowest tree-distances observ,
we tendencially find the pairs of the strongest trees. A second, relatively pronounced 10 1

maximum can be observed at distances of approximately 30 m, so, the strongest Pterocarj
trees seem to stand either very near or very far from each other.

5. Discussion

When we consider the single-number indicators calculated for horizontal stand stucture, Rand
the results obtained seem to be quite reasonable. The different pronounced, but for every spec
group in the natural forest observed tendency towards an aggregated distribution of the tre
could be due to distinct micro-site conditions on the plot. On such micro-sites certain species c
show a quite different vitality, which leads to a clustered occurence of the species at th.
preferred sites. Also fruit dispersion mechanisms must be taken into account. Tropical fon
ecologists surely could discuss the results found here according to the recent knowledge abc
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the ecology of the tree species-groups we dealt with, but as the point of this study is a methodical
one, we will not proceed in this direction, although it would be highly interesting in another
context. Regarding the segregation index S, most species are found to be slightly segregated from
the collective of all other species. This is going well together with the aggregation tendencies
found by calculating the index R, especially as the species groups Croton and Gardenia, which
are detected by R as the first and third most aggregated groups , are at the same time the groups
for which the most prounounced tendency towards segregation is found. The fact , that these
tendencies revealed by the indices Rand S are not easy to recognize visually in the tree
distribution pattern itself(figure 2) underlines the necessity to deal with numerical methods if we
want to receive a distinguished view on spatial stand structure.
Unexpectedly, we found an aggregation index less than one for the 12 year old teak stand,
although it was setup as a plantation and the plant rows still can be seen in figure 3. Therefore we
had expected an aggregation index greater than 1, indicating a tendency towards a regular tree
distribution. The aggregation index of 0.90 is in fact due to the planting pattern applied, where
the distances between the rows are far larger than the tree distances within the rows (figure 3).
So, the next-neighbour-distances will be found only within the rows, which are regarded as a type
of clusters from this sight. This obviously renders the slight tendency towards clustering found
for the young Teak stand, when applying the aggregation index R.
In the context of the DSE training course where this case study was embedded, it was not
possible to perform significance tests for the tendencies found by the indices Rand S. A5 the tree
numbers for the species groups spread widely (figure 1) we have to suspect, that at least the
tendencies found for groups covered only by few trees cannot be proved statistically. So, for
further studies it is recommended to apply statistical tests on the indices Rand S as can be found
at PRETZSCH (1993) and Q UEDNAU and FROHLICH (1994).

The species profile index A behaves just as expected. Compared to the mono-layered pure Teak
stand the natural forest shows a more than three times higher value for A. As the example stand ,
shown in the left hand side of figure 4, representing a considerable rich structured forest in
temperate regions, shows an index value for A of 1.72, the A-index value of 2.74 for the natural
tropical forest gives an impression of the high biodiversity and the species richness and diversity
typical for tropical forests (B OONTAWEE et. aI. 1995). Interpreting this value we have to consider
additionally, that we had aggregated the species of the natural forest to ten groups, on which
structure analysis was applied. If we would have taken into account the real number of about 70
species we would obviously have obtained a even higher value for A, so the index calculated here
indeed underestimates the real diversity of the natural forest stand .

Being so-called ' second-order characteristics' (PENTTlNEN et aI., 1992) pair- and mark
correlation functions give a much more detailed insight into spatial stand structure and the
ecological peculiarities related with, than single-number indices can do. In contrast to the latter
ones we are able to see not only the general structural tendencies but also their scale, which may
be important for example, when the spatial ecology of tree species shall be investigated or when
a forest should be classified as a habitat for certain animals. Additionally, these functions reveal
even different types of distribution patterns occuring at different scales, as we could observe
regarding the pair correlation function for the Vi/ex species group in the natural forest (figure 12).
As we remember, applying the pair correlation function and the aggregation index R to the pure
Teak stand data lead to contradictory results. The former clearly suggested a regular, the latter a
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slightly clustered tree distribution pattern. We explained above in this discussion, that tl
aggregation index R is forced by its concept, the next-neighbour-method, to interprete such pia
rows as clusters, where the tree distances within the rows are far smaller than the distanc
between the rows. The pair correlation function is not trapped by such special patterns al
indicates regularity, according very well to our intuitional idea of regular point patterns. For tl
Pterocarpus species group in the natural forest., we seem to encounter a quite similar effer
where the aggregation index R clearly shows a certain weakness due to its simplicity. So, wh.
performing structural analyses, it is a good recommendation to apply more than one method ai
to interprete the results synergetically.

Finally it is important to state, that the five methods proposed in this study are only son
example parameters of the high dimensional vector 'stand structure' . There are much more me
exciting methods and possibilities than could be shown in this paper. The interested reader w
find many hints in the papers cited below. As one of many examples it seems to be a me
interesting topic to apply pair- and mark correlation functions for different-species-pairs to g
deeper insight into the complex ecology of tropical forest ecosystems or agroforest systems. TI
results could be of very practical silvicultural and ecological use. The aim of this study
reached, if the advantages of using numerical methods for characterizing forest stand structu
could be shown and if it leads to further investigations.
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