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Abstract: The objective of the present paper is to provide
both proof and theoretical deduction of an overlapping, valid
law of allometry for woody and herbaceous plants used in agri-
culture and forestry. In his attempt to find an adequate expres-
sion for stand density, independent of site quality and age,
Reineke (1933['%]) developed the following equation for even-
aged and fully stocked forest stands in the northwest of the
USA: In(N)=a-1.605-In(dg), based on the relationship be-
tween the average diameter dg and the number N of trees per
unit area. With no knowledge of these results, Kira et al.
(1953[%)) and Yoda et al. (195713 and 1963[32) found the bound-
ary line In(m) =b - 3/2 - In(N) in their study of herbaceous plants.
This self-thinning rule - also called the -3/2-power rule - de-
scribes the relationship between the average weight m of a
plant and the density N in even-aged herbaceous plant popula-
tions growing under natural development conditions. It is pos-
sible to make a transition from Yoda’s rule to Reineke’s stand
density rule if mass m in the former rule is substituted by the di-
ameter dg. From biomass analyses for the tree species spruce
(Picea abies [L.] Karst.) and beech (Fagus sylvatica L.), allometric
relationships between biomass m and diameter d are derived.
Using the latter in the equation In(m)=b-3/2-In(N) leads to
allometric coefficients for spruce (Picea abies [L.] Karst.) and
beech (Fagus sylvatica L.), that come very close to the Reineke
coefficient. Thus Reineke’s rule (1933["8]) proves to be a special
case of Yoda’s rule. Both rules are based on the simple allometric
law governing the volume of a sphere v and its surface of pro-
jection s: v =c, - s32. If the surface of projection s, is substituted
by the reciprocal value of the number of stems s=1/N and the
isometric relationship between volume v and biomass m is con-
sidered v=c,-m"? we come to Yoda’s rule m=c;-N-32 or, in
logarithmic terms, In(m) =In ¢; - 3/2 - In(N).

Key words: Self-thinning, allometry, - 3/2-power rule, stand
density rule, woody and herbaceous plants.

Plant biol. 4 (2002) 159-166
© Georg Thieme Verlag Stuttgart - New York
ISSN 1435-8603

Introduction

The growth processes in plants lead to an increase in demands
on available resources and basal area. Without treatment,
stands tend to approach a maximum density quantifiable in
terms of basal area of stand or plant density at given average
dimensions in even-aged stands. Maximum density is related
to tree species, site and the development stage of the stand. In
approaching maximum density, the increase in demand on
area is concomitant with a scarcity in resources and with com-
petitive effects reflected in a characteristic decrease in the
number of plants, i.e., in the so-called self-differentiating or
self-thinning line.

Fig.1 is a schematic representation of the relationship be-
tween plant dimensions and density on the log-log scale. The
upper self-thinning line or limiting boundary line (dark line)
marks the possible maximum density for a species at a given
size or weight per plant in even-aged pure stands under opti-
mum site conditions. The lower self-thinning line (dashed
line) marks the characteristic boundary relationship for any
stand under sub-optimum growth conditions. In accordance
with growth and mortality, the density-dimension relation-
ships in stands A and B approximate their corresponding
stand-specific self-thinning lines and subsequently deviate
from this line, at different absolute levels, with similar gradi-
ents. Under optimum growth conditions, the upper boundary
and self-thinning lines may coincide (stand A). Sub-optimum
site conditions, however, may also cause the self-thinning line
to be positioned more or less distinctly below the upper
boundary line (stand B).

Based on Galilei’s principle of the similarity of forms biologists,
Spencer (1864122]) and Thompson (1917!26]) introduced the
allometric relationships between linear extension, demand on
area, basal area consumption, stand density and biomass of or-
ganisms. Bertalanffy (1951[2]) uses the allometric principle to
model changes in the forms of plants and animals. Yoda, Kira,
Ogawa and Hozumi (1963[32]) found a characteristic decrease
in plant weight with increasing numbers of plants per unit
area for herbaceous plants from which they derived the - 3/2-
self-thinning rule. By establishing an allometric relationship,
using the coefficient - 3/2, between the biomass m per plant
and the number N of plants per unit area in even-aged stands
at maximum density, this rule combines production and pop-
ulation ecological aspects (m e N-3/2). Numerous authors con-
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Fig.1 Common principle of Reineke’s rule (19330"8l) and the - 3/2-
self-thinning rule of Yoda et al. (196352).
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Fig.2 Relationship between number of trees per hectare and the
average diameter for even-aged Douglas fir stands (Pseudotsuga men-
ziesii Mirb.) based on inventory data for Washington and Oregon.
Shown is the line for the upper limit In(N)=a - 1.605 - In(dg) with in-
tercept a=12.5 and slope - 1.605 (according to Reineke, 1933['8]).

sider this the most important rule, or even the law with the
greatest significance in population biology. Investigations on
a variety of plant species provided ample proof of its validity
(Harper, 19778]; Weller, 1987271, 1990!28]), Since the 1980s the
general validity of this rule was repeatedly called into question
(White, 19811291; Zeide, 19871331; Niklas, 1994('3]). Recent stud-
ies, inter alia by Whittington (198413%1) and Sackville Hamilton
et al. (1995[20]) propose a more general version of the self-thin-
ning rule, making it possible to retain the original basic allo-
metric relationships, but also including further determining
and explanatory parameters and allometric coefficients.

The stand density rule for forest stands had been established
by Reineke (1933['8]) a long time before Yoda et al. (1963[32]),
In forest growth research it has gained considerable impor-
tance in data inventory, analysis and modelling (Bergel,
1985!11; Franz, 1968!7l; Sterba, 19751231, 1981[24] 1987251
Pretzsch, 2001171}, In analogy to Yoda's rule, the rule proposed

by Reineke describes the allometric relationship between tree
dimension and the number of trees per unit area. It is based on
stem diameter at height 1.30 m, easily determinable in forestry
practice. In the discussions about the validity of Yoda’s rule,
Reineke’s rule is hardly ever mentioned. The present paper
therefore aims at demonstrating the common ground between
Reineke’s and Yoda’s rule. Here, the empirically established
rule by Reineke is derived theoretically from the spatial allo-
metric laws for stereometric spheres. To demonstrate the
validity of the tendencies in Reineke’s rule and to diagnose
specific deviations of actual stand developments from this
rule, the average diameter-stem number trajectories from
327 treated test plots in spruce (Picea abies [L.] Karst.), beech
(Fagus sylvatica L.), pine (Pinus sylvestris L.) and oak stands
(Quercus petraea [Mattuschka] Liebl.) under long-term obser-
vation were evaluated.

The study aims at making a contribution to the Sonderfor-
schungsbereich SFB 607 of the Deutsche Forschungsgemein-
schaft (Special Research Department of the German Research
Community), which focuses on the sequestration strategies of
woody and herbaceous plants cultivated in agriculture and for-
estry (Matyssek and Elstner, 1997!"1). The proof and the theo-
retical deduction of an overlapping, valid law of allometry
dealt with in this paper allow a connection to be made be-
tween woody and herbaceous plants, between aspects of pro-
duction ecology and population ecology, and between the allo-
metry of individual development and stand development.

Reineke’s Stand Density Rule (1933['8])

In his search for a means of measuring stand density indepen-
dent of site class and age, Reineke (1933!8]) discovered the
stand density rule for maximum stocked even-aged stands in
the northwest of the USA. It describes the relationship be-
tween average diameter dg and the number of stems per unit
area in fully stocked and non-managed stands which takes the
form

N=e2. dg—l.GOS (])

which may be represented as a straight line on the log-log
scale:

In(N)=a-1.605-In(dg) (2)

with intercept a and slope -1.605. This implies, for fully
stocked, non-thinned stands, that with increasing average di-
ameter dg, the number N of stems is reduced by the allometric
constant - 1.605. Reineke obtained this result by representing
inventory data from naturally grown observation plots on
the log-log scale using paired values for average diameter and
number of stems per area. On the basis of inventory data,
Reineke proceeded to determine a boundary line in the form
of a straight line with slope- 1.605 (Fig. 2). As there were mere-
ly slight variations for different tree species, stand structures
and sites, Reineke postulated the general validity of this allo-
metric constant - 1.605, independent of tree species and site,
for fully stocked even-aged forest stands.

Reineke’s rule (1933!'8]) is founded on the statistical evalua-
tion of inventory data from observation areas. The fact that
the temporal development of the number of stems per hectare
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plotted against the average diameter also follows Reineke’s
rule is shown in Fig.3 for long-term experimental plots in
south Germany (Pretzsch, 2000('6]), The graphs reveal that,
independent of their initial density, spruce (Picea abies [L.]
Karst.), pine (Pinus sylvestris L.), beech (Fagus sylvatica L.) and
oak (Quercus petraea (Mattuschka) Liebl.) stands approximate
the limiting boundary line between number of stems per hec-
tare and average diameter, and subsequently, again largely in
accordance with Reineke’s rule, regress in the number of
stems. The absolute level at which this decrease occurs and
which is reflected in the position of the straight line depends
on the overall growth potential of stand sites. The theoretical
straight lines with slope - 1.605, drawn in each of the graphs,
describes the decrease in the number of stems to be expected
according to Reineke’s Stand Density Rule (1933['8]) for self-
thinning in untreated stands under site conditions ranging
from unfavourable to excellent (a=10to a=13).

The 120 spruce (Picea abies [L.] Karst.) test plots, aged between
11 to 166 years, represented in Fig. 3 (upper left), are mainly
located in the Bavarian Alps, the south Bavarian lowlands,
Swabia and the Franconian plateau. Some of these plots have
been under observation since 1882, with a scattering in mean
diameters of stems of between 2.1 cm and 60.7 cm, while the

Avarage diametar [¢m)

number of stems range from 232 to 12899 trees per hectare
and the basal areas from 0.1 to 92.3 m? per hectare.

Beech (Fagus sylvatica L.) is represented on the basis of 32
plots, mainly from Lower Franconia, under observation since
1980, with tree age ranging from 33 to 219 years (Fig. 3, upper
right). Here, average diameters range from 5.7 to 71.8 cm, stem
numbers from 92 to 11242 trees per hectare, and basal areas
from 13.03 to 53.35 m? per hectare. In the past few decades
a positive effect on the average diameter was recorded for
spruce (Picea abies [L.] Karst.) and beech (Fagus sylvatica L.),
which signifies an increase in potential stand density and re-
flects the improvement of site conditions on these areas. This
trend also becomes quite obvious when plotting basal area of
the stand over average diameter (Fig. 4), with the former calcu-
lated from the average diameters and number of stems per
hectare shown in the graphs of Fig. 3. On many plots the basal
areas of spruce (Picea abies [L.] Karst.) and beech (Fagus sylva-
tica L.) stands are in the process of achieving new, hitherto
unexpected peak values (Pretzsch, 1999!151),

The representation for pine (Pinus sylvestris L.) involves 152
test plots, mainly from central and northeast Bavaria, the old-
est of which have been under observation since the spring of
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1900. Ages range from 12 to 152 years, basal areas of stands
comprise 3.12 to 53.3 m? per hectare and numbers from 127
to 18 606 trees per hectare, with a spectrum of average diame-
ters ranging from 2.0 to 53.0 cm.

Oak (Quercus petraea [Mattuschka] Liebl.) representation is
based on 23 plots from northern Bavaria, some of which have
been observed since 1900 and are 38 to 360 years old. Stand
data range from 45 to 5662 trees per hectare, average diame-
ters from 7.1 to 84.4cm, and basal areas from 10.68 to
40.40 m? per hectare.

On account of the great length of the observation periods and
the wide range of sites, this data material may be considered
unique and provides proof that growth processes on long-term
test areas approximate Reineke’s rule, as reported by the Ba-
varian Network for Long-term Experimental Plots. In the tra-
jectory bundles representing average diameter over number
of stems it is the untreated plots and those thinned according
to the A-degree (slight thinning from below) that determine
the limiting boundary line.
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The - 3/2-Self-Thinning Rule of Yoda et al. (1963[32])

With no knowledge whatsoever of the stand density rule of
Reineke (1933!8]), Kira et al. (1953[°!) and Yoda et al. (1957[31]
and 1963132]) discovered a similar boundary line in their inves-
tigations of herbaceous plants. Their self-differentiating or
self-thinning rule, also called the - 3/2-power rule or Yoda’s
rule, describes the relationship between the average weight
m and the density N in even-aged plant populations under
natural growth conditions. Kira et al. (1953[°!) and Yoda et al.
(1957031 and 19631321), followed by Harper(197781) and Weller
(19871271 assumed the following relationship for herbaceous
plants and shrubs:

m=eP.N-32 (3)
or, in logarithmic form

In(m)=b-3/2-In(N) (4)
where the average plant weight m and plant density N (num-
ber of plants per unit area) are shown to have an allometric

relationship, with the coefficient of allometry -3/2. The
parameter b for the position of the curve, in turn, represents
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an isometric constant, while e® stands for the intercept and po-
sition of the line. Given undisturbed development, the start of
self-thinning is followed by a population development along
the “self-thinning line” or - 3/2-line, when plotting the aver-
age plant weight m and the plant density N on the log-log
scale (Fig. 5, left). Contrary to Reineke, the authors derived this
rule not by evaluating inventory data and artificial time series,
but by monitoring the weight-density relationships of short-
rotation stands of herbaceous plants plotted over time.

Harper (1977!81) shows numerous model examples for popula-
tion developments according to the - 3/2-self-thinning rule.
However, he also draws attention to deviations from this rule
in cases where light and nutrient resources were reduced.
Thus, in full daylight, the English rye grass (Lolium perenne L.)
follows the — 3/2-self-thinning rule (Fig. 5, left). Based on four
different original stand densities at state H;, the trajectories
(H;-H,-Hs-Hy-Hs) approximate the self-thinning line with the
slope - 3/2 with progressive stand development, i.e., initially
the average weight per plant increases, independent of the
original number of plants. With the approximation to the up-
per boundary line, a slowing down in the rate of weight in-
crease is noted and mortality processes occur, so that the four
stands start using different strategies to exploit available
resources: many, rather light-weight, plants compete with a
few heavy-weight ones in the more or less dense grassy stand.
If the light supply is reduced (Fig. 5, right) the possible weight
decreases with given plant density, or, conversely, less plants
with a given size or given weight per unit area will be able to
find adequate living conditions. A reduction in daylight by 70%
will result in a limiting boundary line with a slope of - 1.0,
whereas it would be - 3/2 under full light conditions. Figs.3
and 4 also reveal a marked displacement of the upper bound-
ary line based on specific site conditions.

The Stand Density Rule of Reineke (1933!'8]) as a Special
Case of the Self-Thinning Rule of Yoda et al. (1963[32])

A transition from the - 3/2-self-thinning rule of Yoda et al.
(196352]) In(m) =b - 3/2 - In(N) to Reineke’s stand density rule
In(N)=a-1.605-In(dg) becomes possible if mass m is re-
placed by a function of stem diameter d. The allometric func-

100 1000
Density [plantsim?]

tion m =k - d* with the isometric constant k and slope r (= allo-
metric coefficient) proved suitable for this purpose. If we re-
place m in formula 4 by k-d', we get In(k-d")=b-3/2-In(N)
and by rearrangement of the equation In(N)=-2/3-(In[k] +
r-In[d]-b) and finally In(N)=-2/3-(In[k]-b)-2/3-r-In(d).
In the last-mentioned equation we identify —2/3-(In[k] -b)
as intercept and call it ¢, the product -2/3-r represents the
slope that can be estimated using empirical data.

On the basis of biomass analyses from Ellenberg et al. (199613])
and Pellinen (1986['1), Meschederu (19971'2]) parameterized
the allometric relationships m=k-d" between aboveground
biomass m and stem diameter d at a height of 1.30 m. From re-
gression analysis for spruce (Picea abies [L.] Karst.) and beech
(Fagus sylvatica L.), respectively (see Fig. 6), this resulted in

m = 0.0442 - 426597 (5)
m = 0.1143 - 425030, (6)

Using mass m, described in formula 5, as a function of diame-
ter d in the relationship In(m)=b - 3/2-In(N), this would re-
sult in

In(N)=c-1.773-In(d) (7)

for spruce (Picea abies [L.] Karst.) (-2/3-r=-2/3-2.6597 =
-1.773)and in

In(N)=c-1.669-In(d) (8)
for beech (Fagus sylvatica L.) (- 2/3-1=-2/3-2.5030=- 1.669).

The intercept of the straight line equation has been compacted
into the isometric constant ¢ (c=-2/3-[In(k)-b]) and the
slope results from - 2/3 - 1. In this case, the only points of inter-
est are the calculated coefficients of allometry -1.773 and
- 1.669. These come very close to the value Reineke found em-
pirically. The rule established by Reineke (1933!'8]) thus proves
to be a special case of the self-thinning rule of Yoda et al.
(19570311 and 1963132]), Proceeding from the premise that the
- 3/2 rule is valid, species-specific deviation from the Reineke
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Fig.6 Allometry between breast height diameter and aboveground
biomass for spruce (Picea abies [L.] Karst.) and beech (Fagus sylvatica
L.). The allometric relationships for spruce (Picea abies [L.] Karst.) and
beech of m=0.0442-d%%% and m=0.1143-d>%03, respectively,
were derived by Meschederu (1997!'2]) from data of Ellenberg et al.
(19963)) and Pellinen (1986!').

constant - 1.605 may obviously be explained by the species-
specific diameter-biomass relationships of tree species, e.g.,
caused by the species and age-dependent variation of wood
density. For spruce (Picea abies [L.] Karst.), the slope value
- 1.773 derived in this manner comes close to the coefficient
- 1.737 calculated by Sterba (1987!2°]) or - 1.75 found by Del
Rio et al. (20011*]) from their comprehensive evaluation of
test areas.

Derivation of the — 3[2-Self-Thinning Rule from the
Spatial Allometry of the Sphere

The rules established by Reineke (1933['8]) and Yoda et al.
(19571311 and 1963[321) have a common theoretical background.
Both rules are based on the same simple and unambiguous
allometric relationship that exists between volume, surface of
projection and surface of stereometric bodies, such as e.g., the
sphere.

The following allometric relationship exists between the vol-
ume v=4/3-n-1r? and the surface of projection s=mn-1? of a
sphere with radius r

v=c;-s32 with ¢, = 5= =0.75225.... (9)

The basal area s may be substituted by the reciprocal of the
number of stems s=1/N, as any given unit area of 1.0 will ac-
commodate N=1/s trees. Conversely, an average basal area
may be calculated by dividing the unit area by the number of
trees N. After substituting s by the reciprocal of the number of
stems, we derive from formula (9)
v=c;-N-32 (10)
On account of the isometry between volume and mass
v=c,-mM the result is the self-thinning rule of Yoda
m = c3-N-32 or, in logarithmic form In(m) =In(c;) - 3/2 - In(N).

Here, c; to c¢; again stand for the isometric constants which
act as multipliers, but have no effect on the allometric rela-
tionships under discussion.

Discussion

For even-aged, fully stocked stands in the northwest of
the USA, Reineke (1933['8]) found the relationship In(N)=
a-1.605 - In(dg) between the average diameter d and the num-
ber N of trees per hectare. Without any knowledge of these re-
sults, Kira et al. (1953°]) and Yoda et al. (1957!3!] and 1963(321),
in their investigations of herbaceous plants, came across the
boundary line In(m)=b-3/2-In(N). This self-thinning rule -
also known as the - 3/2-power rule - describes the relation-
ship between the average plant weight m and the density N
in even-aged plant populations, given natural development. A
transition is possible from Yoda’s rule In(m)=b - 3/2-In(N) to
Reineke’s stand density rule In(N)=a- 1.605-In(dg), if mass
m in the former rule is considered a function of the diameter
dg. The coefficients of allometry calculated in this manner
come very close to the coefficient found by Reineke. The rule
established by Reineke (1933['8]) thus represents a special
case of Yoda’s rule. Both rules are based on the same simple
and unequivocal allometric law governing the volume of a
sphere v and its surface of projection s, i.e., v=c-s32, with
C=35=0.75225...; the same coefficient of allometry of 3/2 is
valid for the relationship between volume and surface area of
a sphere. With increasing surface of projection or basal area s,
the volume v of the sphere rises according to the progression
governed by the allometric constant 3/2. Assuming that the
same allometric relationship as for a sphere exists between
the volume of a tree v and the requisite basal area s, assuming,
furthermore, that tree volume v is proportional to the weight
of the tree m, i.e,, m=v-constant, we arrive at Yoda’s rule.
The coefficients of allometry in Yoda’s and Reineke’s rules are
both therefore derived, theoretically from the spatial allo-
metry of stereometric bodies, and empirically from the stand
development on permanent observation plots.

The analogy with the stereometry of a sphere is interpreted in
Fig. 7 as follows: let us proceed from the abstract concept that
plants with their root system form spheres, which are densely
packed and arranged on a plane, the weight and demands on
basal area of which increase steadily with progressive growth
from state A to D. It then follows that less and less objects will
find room on an area of 10 x 10 m. With the increase in sphere
volume from 0.13 to 1.02 (Figs.7A,B) and 8.18 to 65.44 m3
(Figs.7C,D), the possible density of spheres decreases from
2.56 spheres per m? (Fig. 7A) via 0.64 (Fig. 7B) and 0.16 down
to 0.04 spheres per m? (Figs.7C,D). As the relationship be-
tween volume of the sphere and density follows the equation
In(volume) = - 0.65 - 3/2 - In(density), the relationship can be
considered to be of an allometric nature, similar to the rela-
tionships between the change in dimensions and density in
even-aged stands found by Yoda and Reineke. The decrease
in the number of possible spheres per area with increasing
volume of the sphere therefore follows the same gradient as
the decrease in the number of possible trees with rising tree
volume or biomass, in the course of stand development.

The spatial allometric relationship between area consumption
and volume or weight of stereometric bodies may therefore be
considered a scale-overlapping law which is based on the di-
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mension-growth area relationship of individual plants and
thus approximates the density-dimension relationships of
stands. At the same time, this allometric relationship has an
obviously systems-overlapping validity. The rules by Yoda and
Reineke, separately developed for herbaceous and woody
plants from agriculture and forestry, represent identical strat-
egies for sequestration. Yoda’s rule was repeatedly verified for
annual plants and trees (Silvertown, 19922!1). In the present
paper Reineke’s rule is successfully derived from Yoda’s rule
and proofis given of the fundamental validity of Reineke’s rule.
Data material from the Network of Long-Term Experimental
Plots in Bavaria was used, a data base that is considered unique
as regards length of observation time and spatial representa-
tion (Pretzsch, 2000(161),

The combination of rules by Reineke and Yoda is designed to
serve forestry purposes over and above satisfying a wide-
spread interest in adding to existing knowledge in forestry sci-
ences. Once maximum density is known, its dependence on
tree species, site and development phase, it will be possible to
calculate the potential performance of a stand if and when it
comes under management (Franz, 1965[°1, 1967161 and 1968!71;
Sterba, 1975[23] and 1981[24)). The position parameter a of the
Reineke equation rises with increasing site quality and may
be used to predict the potential yield of a stand (Bergel,
1985!1). The knowledge of the self-thinning line as the biologi-
cal upper limit makes it possible to quantify density (Reineke,
193308l; Kramer and Helms, 1985!19). Thus, descriptions of
stand density using the percent stocking density p and the
stand density index (SDI) are founded in Reineke’s rule. Fur-
thermore, the self-thinning rule is a useful reference on which
to base model descriptions of self-thinning processes and the
prediction of mortality processes (Harper, 197718), as well as
the diagnosis of disturbance factors and the validation of stand
growth models (Pretzsch, 1999[%5! and 2001"7]),
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and density in plants is similar to that in
spheres, where the decrease in volume per
unit area at a density to the power of - 1.5
is expressed by the equation volume = con-
stant - density—/2.
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