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Abstract Allometry, in its broader sense, is concerned with the size of organisms
and its consequences for their shape and functioning. Since the postulation of the
allometric equation in the 1930s, allometry, in a narrow sense, refers to analysis
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and modelling of logarithmic transformed bivariate size data by linear regression
techniques.

This chapter first points out that allometric research built up a valuable set of
hypotheses and biometrical methods for analysing size of organisms and its
consequences for their shape and functioning. Then, a summary of the knowledge
about allometry of woody plants and populations will unmask the search for
overarching general allometric exponents of shape and form development largely
as a hunt for a phantom. Tree size development and self-thinning processes in
forest stands give evidence that allometric exponents certainly lie in a narrow
corridor, but are species specific and superimposed by site conditions, mechanical
disturbances, competition, and other types of stress. The discussion states that as
long as allometry searches for universal constants to a certain extent, it stills our
innate desire to reduce complexity and generalise. However, time is ready to
focus on and understand the differences between the species, sites etc. in order to
contribute to a better system of understanding. It is concluded that allometry has
to draw attention both to the internal size-driven allometric partitioning process
and to the external factors, which determine optimal biomass allocation. And at
best, allometric research should analyse both factors in order to understand and
integrate them. A systematic analysis, ordering and causal explanation of allome-
tric exponents, which reflects an individuals’ tricks and traits of optimising
fitness, may provide an important link between plant genetics, physiology, plant
biology and population biology. In contrast, application of inaccurate and impre-
cise general scaling rules can cause considerable flaws in modelling, prognosis
and ecosystem management.

1 Introduction

1.1 Concept of Allometry and Biometrical Formulation

Allometry is a field of science concerned with the size of organs, organisms
and populations and its consequences for their shape and functioning. As size
and size relations in and between organisms reflect the result of the phylo- and
ontogenetic evolution towards a functional optimisation (Niklas 1994, p. 1), the
study of allometry seeks to understand the adaptations of living organisms to their
environment.

1.2  Allometry in Its Broader Sense

A plant is a means and result of photoproduction at the same time. Its current size
(e.g. the proportions between root and shoot) determines its access to resources
and supply of building material. The latter is allocated and used for growth in

Re-bvaluation of Allometry 341
a h(m) b h(m)
h/ld=04 04 0.4 h/d=05 04 0.3
c/h=05 05 0.5 c/h=0.8 0.7 0.6
cd/cl=0.9 0.9 0.9 cd/cl=0.4 0.8 1.2
40 + ) 40
20 A 20 A
10 A 10 4
9
Age (yr) 10 50 150 Age (yr) 10 50 150
Weight (t) 0.01 1 10 Weight (t) 0.01 1 10

Fig. 1 European beech crown diameter-crown length development (a) with isometry, (b) with
positive allometry, from age 10-150 in schematic representation (a) The tree represents geometri-
cal similitude if all linear dimensions change proportionally to each other (e.g. diameter (cd) and
length of the crown (cl) ¢d o ¢/*, « = 1) and in general between all linear (lin), quadratic (quad)
and cubic dimensions (cub) (e.g. tree height = lin, crown projection area = quad, tree biomass
= cubic) applies lin o< cub'’?, lin quad'’? | and quad o cub*>. (b) Mostly the relationships
between tree dimensions change not proportionally but allometric with e.g. ¢/ o< cd®' g oq # 1.
In case of this European beech tree crown diameter (cd) and crown length (cl) are related like
cd o el gy g = 1.2)

such a way that the altered plant size again fulfils the plant’s functions (growth,
reproduction) in an optimal way. Proportional size change (isometry) is mostly not
adequate for optimal functioning. Rather, due to their specific efficiencies, organ
size has to be changed unproportionally (allometry) for ensuring optimal function
and supply of the plant with building material. That is the reason why with
increasing size a tree’s shape changes seldom proportionally, like the European
beech shown on Fig. 1a. On the contrary, slender juvenile European beech trees
have a rather small cd/cl-ratio between crown diameter cd and crown length cl, but
with tree size width and cd/cl ratio of the crown increases as the crown diameter
expands over-proportional in relation to tree height and crown length (Fig. 1b).
Different phylogenetic pathways of functional optimisation lead to characteristic
allometric developments of species. For example, an open grown European beech
can be easily distinguished against an open grown Common oak by its shape — even
from far distance. The science of allometry and the allometric biomass partitioning
theory (APT) investigate the plants’ internal feedback between size, shape and
functioning (broken line in Fig. 2) and strive for general species-overarching rules
for allometric partitioning and biomass allocation.

However, a plant’s genetically determined shape (genotype) is not fixed as
strictly as in animals but allows a comparably large ontogenetical plasticity (phe-
notype). For example, a European beech tree that grows in a forest environment
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external effect

Fig. 2 Allometric research has to draw attention to both, to the internal size-driven allometric
partitioning process (broken arrow) and to the external factors which determine optimal bio-
mass allocation (continuous arrow). Competition for contested resources and externally driven
disturbances like organ losses superimpose the internal size dependent allometric growth

differs substantially from the unhindered open-grown tree. Growing in a stand,
a tree maximises its fitness by appropriating contested resources and adapting to
the environmental conditions created by the neighbouring trees. In contrast to
open-grown conditions, the tree’s unhindered species-specific ontogenetic form
development is superimposed by competition. According to the optimal biomass
partitioning theory (OPT), light-limited trees in the understory, for example, boost
their crown growth in order to improve the supply with the limiting light factor (van
Hees and Clerkx 2003; Hofman and Ammer 2008). By contrast, in case of water or
nutrient limitation, trees (regardless whether growing solitary or in a forest) en-
hance their root growth to overcome their limited access to these belowground
resources (Comeau and Kimmins 1989; Kimmins 1997). In other words, external
factors like a plant’s competitive status within the stand, the site conditions, and the
occurrence of disturbances (e.g. mechanical abrasion, crown breakage) affect the
plant’s supply with carbon, light, water and mineral nutrient. So, for a suppressed
European beech in a dense mixed stand, species-specific allometry or generalised
“spinach—redwood-allometric” relationship might apply in theory, however, com-
petition and selective pressure modify allocation and shape to such an extent, that
this tree hardly resembles an open grown or dominant beech. External factors
(solid arrow in Fig. 2) continuously distract and superimpose the unhindered,
primarily size driven plant allometry. So, allometry has to focus on both, the
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internal size-driven allometric partitioning process and the external factors, which
determine optimal biomass allocation; and at best, allometric research should
analyse both factors in order to understand and integrate them.

In contrast to this wide approach to allometry as the study of relative size growth,
which dates back to Thompson (1917) and is an issue again at present (e.g.
McCarthy and Enquist 2007), allometry in a closer sense refers to the analysis
and modelling of bivariate size relations of organisms, populations or communities
by double-logarithmic relationships, which are introduced in the sequel.

1.3 Biometrical Analysis and M odelling of Plant Allometry

In the early 1930s, Huxley (1932) and Teissier (1934) formulated a “relative growth
equation” that is today widely accepted as the allometric equation. Supposing x and
y quantify the size of plant organs or a total plant, the growth x’ (dx/ds) and y' (dy/dr)
is related to the size x and y as

Y/y=ax/x. (1)

Better known are the integrated and logarithmic representations given below.
y = ax”, (la)
In y=Ina+u«lnx. (1b)

Allometry is the relative change of one plant dimension, dy/y (e.g. the relative
height growth) in relation to the relative change of a second plant dimension
dx/x (e.g. the relative diameter growth). Suppose the relationship between the two
plant dimensions follows y = ax*, then dy/dx = a(1/x)ax* or dy = a(1/x)ax*dx,
so that

/s =L fory @

This shows, that the rate between the relative changes of the plant dimensions
y and x is constant and equal to a, which is the allometric exponent in (la). The
allometric exponent « can be understood as a distribution coefficient for the growth
resources between organs y and x: when x increases by 1%, y increases by «%.
An individual tree height—diameter-allometry of opg = 0.6 means that height
increases by 0.6% when tree diameter increase by 1%. Applied on stand level, a
stem number—mean tree diameter-allometry of Bn.aq = —1.6 means, that the stem
number per ha decreases by —1.6% when mean tree diameter dq increases by 1%.
The exponents « and f3, respectively, describe the slope when we plot In(/) versus
In(d), respectively In(N) versus In(d,).
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The value pairs y;, y;41 and x;, x;,; from consecutive surveys of the plots can be
used to calculate the period-wise slope o . It represents the distribution key of
matter allocation between y and x in a given period.

;o _In0i) = In0i) _ In(yiei/yi)
P In(xyr) — In(xg)  In(xg /x)

©)

For infinitely small time steps, (3) corresponds to the quotient dy/y/dx/x = «
(cf. (2)). In this chapter, allometric factors (a, b, ...) are distinguished from
allometric exponents (x, 8, ...) by Latin respective Greek letters (cf. e.g. (1b)).
By writing « or f§ prime (e.g. &), it is emphasised that the allometric exponent is
based on short-term consecutive surveys (3); the subscripts of the allometric
exponent (e.g. «, ) show which size variables are addressed.

Narrowly defined, allometry refers to a set of methods for analysing bivariate
datasets by applying the allometric equations (1)—(3) starting with logarithmic trans-
formation of the size variables, application of regression analysis (e.g. OLS, RMA,
PCA regression) to the In—In-transformed data, estimation of allometric factors and
exponents, and finally the application of the obtained regression line to eliminate
size-effects, to reveal species-specific or site-specific allometric exponents, and
finally to interpret deviations from the fitted regression line as variability or plasticity.

1.4 Geometrical and Fractal Scaling

Because of the physiological significance of allometric exponents « (1a), they have
been strongly discussed ever since. Since its beginning, allometric research was
mainly driven by the search for an overarching, universal, allometric exponent.
Often, it was proposed that volume or mass related allometric functions scale with
exponents of 1/3 due to the volume dimensionality (von Bertalanffy 1951; Yoda
et al. 1963, 1965; Gorham 1979). More recently, West et al. (1997, 1999), Enquist
et al. (1998, 1999) and Enquist and Niklas (2001) presented a model for a
general explanation of allometric scaling with exponents of 1/4, based on fractal
networks of transportation systems in organisms (West-Brown-Enquist-model,
short WBE-model).

Mostly, allometric analyses assume geometrical similitude as a starting point and
null hypothesis. Geometrical scaling or similitude means that between different linear
dimensions liny, lin, . . . lin, (e.g. tree height, diameter, crown length, height to crown
base) applies proportionality lin; o lin - - - o lin, (Fig. 1a). It further assumes that
between quadratic tree attributes (e.g. basal area, leaf area, crown surface area,
growing area) and linear dimensions applies quad o< lin?, and further between
cubic variables like volume v or weight w (e.g. stem volume, crown volume, tree
biomass) and linear dimensions applies cub o lin®. That means lin o cub'/>and

quad o< cub?/? )
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This corresponds to the 1/3 exponent scaling as three is in the denominator of the
allometric exponent. Application of (4) to the relationship between mean tree volume
v ( = cubic) and mean growing area 5 ( = quad) yields 5 oc /3. AsN o< 57!, we get
the —3/2-power rule of self-thinning ¥~ o< N or # oc N™/2, which obviously
assumes geometrical scaling and isometric form development (Yoda et al. 1963,
1965; Gorham 1979). Note that the —3/2 power rule belongs to the 1/3 exponent
scaling, as volume scales to N with the power of —2/3. It has only become famous in
the reverse formulation, where N scales to volume with the power of —3/2.

Fractal scaling in contrast assumes cub o< lin* with o # 3 and a deviation from
1/3 exponent scaling. For the relationship between weight (w) and tree stem
diameter (d), Enquist et al. (1998, 1999) postulate w o< %3 with ba « d?, the
basal area—weight relationship results in

ba o< w4, (5)

Obviously, fractal scaling leads to a quarter power (1/4-exponent) scaling rather
than 1/3 exponent geometrical scaling. Applied on mean tree level, Enquist et al.
(1998) derive 7 & N~*3, which means a more shallow self-thinning line compared
to ¥ oc N73/2 from geometrical scaling. Enquist et al. (1998) stress that their model
¥ oc N™*/3does not predict self-thinning trajectories, but they do not explain why.
This restraint makes their model’s predictions somehow immune against falsifica-
tion (Pretzsch 2006).

Note that when a statistical analysis of empirical data yields, e.g. w=%/* « N
<=>w o N~/ that implies not necessarily geometric scaling, e.g. a combination
of fractal scaling w oc @3 and § o d'9/%would also yield w o< 5/2 or w ox N=3/2
(as N o §'). Specific deviations from geometrical scaling can obviously cancel
each other so that an integrated view just looks like geometrical scaling, but is fractal
in fact.

2 Formation of Shape and Form: Allometry on Plant Level

2.1 Above and Below Ground Allometry

The relationship between stem diameter and crown width is a good example of
allometry relevant to the silvicultural management of pure and mixed stands of
Norway spruce and European beech. Figure 3 displays the different space seques-
tration strategies of both species (crown widthocstem diameter”) analysed for the
unthinned mixed species stands, Freising 813/1-6 in South Bavaria (Pretzsch and
Schutze 2008). Crown width, and hence, also the growing space requirement,
increases with increasing stem diameter. Norway spruce exhibits an allometric
exponent of o = 0.49, European beech a significantly higher allometry of o =
0.60. Consequently, for the same increase in diameter, European beech’s demand
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Fig. 3 Allometric relation between tree diameter (d) and crown diameter (cd) of Norway spruce

(continuous line) and European beech (broken line) at long-term experimental plots Freising

813/1-6 in (a) Cartesian coordinate and (b) double-logarithmic system. The a.qg-allometry
shows the stronger ‘crown expansion and steeper slope a of European beech (oeqq = 0.60)
compared with Norway spruce (teq g = 0.49)

for growing space is higher than that of Norway spruce. This species-specific
allometry and growing space requirement long time is worked into the yield tables.
For instance, the Norway spruce tables from Assmann and Franz (1965, cf. domi-
nant height 40 m at age 100) and Schober’s (1972) European beech tables (cf. yield
class 1.0, moderate thinning) show that, at a mean tree diameter of 10 cm, there are
expected some 3,500 trees ha™ ' in a Norway spruce and 2,500 in an European beech
stand (ratio 1.4:1). However, at a mean tree diameter of 50 cm, Norway spruce still
has about 350 trees ha™', whereas there are less than 175 trees ha ™~ (ratio 2:1) in the
European beech stands due to its expanding crown allometry. This example has
been selected to show the typically more lateral crown spread of broadleaves in
comparison with the more vertical and pyramidal growth of the conifers (Niklas
1994, pp. 173-174). The species-specific differences in space requirement on
individual tree level will reappear on stand level in species-specific slopes of the
self-thinning lines (cf. Sect. 3).

The root-shoot development is maybe the best-analysed allometric relationship on
plant level (e.g. Comeau and Kimmins 1989; Kimmins 1997; Shipley and Meziane
2002; Weiner 2004). It contributes to scrutiny of the optimal partitioning theory
(OPT), which states that a plant invests always into improving the access to the
limiting factor; e.g. if this is light or water, the plant invests in shoot or root growth
respectively (Bloom et al. 1985). Recently, the necessity of estimating the below-
ground carbon content enhanced the interest in root—shoot allometry (Levy et al.
2004), as shoot size might be used as predictor variable for root size and biomass. The
root-shoot allometric exponents (otr s In Wy X ws™+) and root—shoot ratios Grs = Wi/Wwg
of herbaceous and woody plants vary in a broad range between o, ; = 0.2 — 1.3 and
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¢rs =0.1 —1.0, respectively (Hofman and Ammer 2008; Levy et al. 2004; Miiller et al.
2000; Pretzsch 2009; van Hees and Clerkx 2003). And most of the studies revealed a
non-isometric root-shoot development (o, # 1), which may lead to confusion of
simple size effects with plasticity (cf. Sect. 2.2). Allometric studies of herbaceous
plants (Miiller et al. 2000) and woody plants (Kozovits et al. 2005) attribute dif-
ferences in the root—shoot ratio simply on an ontogenetic allometric size effect.
According to these studies, o in w; o< ws*samounts to « < 1 and values between 0.3
and 1.0; in other words, root biomass grows slower than shoot and the root—shoot ratio
decreases just size dependent, i.e. allometrically (APT). Other authors (Hofman and
Ammer 2008; Meier and Leuschner 2008) corroborate the OPT and find plasticity
beyond allometric development. Bloom et al. (1985) and Shipley and Meziane (2002)
reveal the interplay of size-dependent allometric size development and site-specific
plasticity of plants; obviously, plasticity beyond allometric shape evolution decreases,
when site conditions get worse and under strict water limitation, root—shoot growth is
merely size dependent. As shown in Fig. 2, plants allocate biomass (and thus optimise
the allometric exponent and distribution key ) not only in response to changes in size
(APT), but also react on external factors like site conditions (OPT).

2.2 Detection of Changes in Allometry and Allocation Pattern

2.2.1 Elimination of the Size-Effect

In general, an allometric relation between two dimensions, e.g. «, , between root and
shoot biomass, leads to a changing biomass ratio between root and shoot during
development — except if it is isometric, i.e. & = 1 between one-dimensional size
variables and 1/3 exponent scaling between variables of quadratic and cubic
dimensions. When the allocation pattern of two differently treated groups of
plants (e.g. fertilised versus untreated reference) is to be compared, the mean
size is often different, because of the accelerated growth in the fertilised group.
This advance in size causes a purely ontogenetical difference in biomass ratios.
So, comparisons between biomass ratios of the two groups run the risk to miscon-
strue simple size effects as changes in the allocation key caused by the fertiliser. In
non-isometric allometric plant growth, each factor that changes size growth
changes also the biomass ratios. In order to distinguish allocation effects from
simple size effects, the size effect is often eliminated; there is only evidence of group
differences when the group means still differ after elimination of the size effect.

Suppose organ y scales with an exponent of «, to total plant weight x and organ z
with o, (y o< x™, respectively z o< x*). Then, the ratio between the biomass of organ
y and z (r,. = y/z) changes with size like

Ty o X7 6)

with y = o, — o
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Equation (6) reflects, that except for y = 1, the biomass ratio changes nonlinear
with size x, and that the size effect should be eliminated before interpretation of the
differences as a changed allocation pattern caused by treatment. Suppose x; and x,
are the mean sizes in groups 1 and 2, respectively, then — assuming the same
allometric exponent and factor — ry, | o« x,” and Tyz2 < X7 and

Fyzt = Ty 2 (00 /x1) 77 7

That means, given the observed ratio in group 2 of treated plants, ry:2 and the
size quotient between the two groups x,/x;, (7) enables us to derive the expected
biomass ratio 7. | after any size effect is eliminated.

The following example shows the relevance of such an elimination of the size
effect. Suppose the root biomass w, scales with an exponent of 0.55 and the leaf
biomass wy with 0.75 to the total plant biomass w, (w; & w*>® and w; o< w07,
then for the ratio between root and leaf biomass (P, = wr/wi) applies
Fuewt ¢ W~ If measurement would yield 7y, = 1.6 for group 1 of damaged
trees and ryna2 = 1.5 for reference group 2, a different allocation key between
the groups seems.obvious. However, if we consider that tree size in group 1 is
w1 = 400 kg compared with w, = 550 kg in group 2, we can apply (7) to
eliminate the effect of the size difference and allometric change due to ontogenetic
drift. The estimated ratio for group 1 would be 7,,,,, = 1.5(550/400)%? = 1.60.
In other words, the ratio of group 1 is different from that of group 2, but behind
the difference is merely the slowing down of size growth and not an altered
biomass allocation key.

2.2.2 Deviation from Scaling Rules

Environmental changes can lead to deviations in the allometric development,
following a constant species-specific exponent o. In plots with double-logarithmic
scales, deviations from allometric behaviour are apparent by the deviations from
the linear slope. For a detailed analysis of x—y-allometry, the slope o’ in (3) can be
calculated from the pairs of variables y;_, _, and x,_,_, from consecutive surveys,
which are commonly available from long-term observations in forest growth and
yield science. In Fig. 4, we illustrate the usefulness of slope «' for quantifying the
effect of (a) competition, and (b) long-term ozone fumigation on the ~—d-allometry
of European beech and Norway spruce.

Figure 4a shows the h—d-allometry of European beech in the Norway spruce—
European beech mixed stand FRE 813/1 near Freising in the period 1994
2005 (Pretzsch and Schiitze 2005). The calculation of oc;ud = In(ha00s5/h1994)/
In(da00s /d1994) (cf. (3)) results in o, = 0.85, on average, with a range of
o4 = 0.1-3.5. This means, when diameter increases by 1%, height increases on
average by 0.85%. However, thorough analysis reveals that, in case of small
understory trees, a diameter increase of 1% corresponds with a height growth of
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Fig. 4 Change of h—d-allometry of (a) European beech under competitive stress and (b) Norway
spruce under ozone stress, shown in a double-logarithmic coordinate system (a) For European
beeches of different social classes (n = 107), the h—d-allometry is shown for the period 1994—
2005. (b) For Norway spruce (n = 19) trees under ambient ozone (thin black lines; 1 x 03) show
shallower slopes than trees under double ozone fumigation (bold gray lines; 2 x Os). The
straight lines represent the allometry expected for geometric scaling with & = 1.0 and intercepts
In(a) = - 1.0, 0.0 und + 1.0 and serve as a reference

up to 3.5% (steep slopes on the left of Fig. 4a), whereas, in case of dominant
trees, a corresponding height growth of 0.1-0.5% was found (shallow slopes in
the right part of Fig. 4a).

Long-term ozone fumigation in a part of the same stand changed the h—d-
allometry in the period 2000-2007 for Norway spruce. The canopy space of this
part of the experimental plot is accessible by a scaffolding and a canopy crane,
which enable annual high precision tree height growth measurement used for
Fig. 4b. The thin black lines in the In—In-grid represent A—d-slopes under ambient
ozone (1x0Os3), bold gray lines those for 2x Os. The straight lines indicate the
expected allometry under geometrical scaling (h o< d*, o = 1). The slopes in the
period 2000-2007, equivalent with the allometric exponent, range between o), ; =
0.27-2.42 (mean o;, ; = 0.99). The graphical impression that those trees growing
under double ambient ozone have steeper slopes can be substantiated by analy-
sis of their allometric exponent «', 4. The comparison between trees growing under
ambient ozone concentration with sample trees under double ozone concen-
tration in the same stand, similar in tree size, tree age and crown parameters
yields significant differences of oc’,llzo" =0.73(£0.11,n = 8) and ;5> = 1.18
(£0.17,n = 11). Numbers in brackets represent standard error and sample size,
respectively. Obviously, under ozone fumigation, Norway spruce enhances height
growth over diameter growth; in other words, its stems alter towards top-heavy,
full-formed and rather unstable shapes (Pretzsch et al. 2009).
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2.3 Effect of Allometric Scaling on Growth and Yield
Curves of Plants

Assumptions about allometric scaling have considerable consequences for the
growth and yield (accumulated growth) processes. In the sequel is shown, how
the surface-weight-allometry (s ox w*+) affects the growth and yield curves of
plants. In his attempt to explain one of the most fundamental processes of organ-
isms’ growth, von Bertalanffy (1951) describes the body mass growth rate (dw/dt =
ass — resp) as the result of two terms representing assimilation (ass = a-s) and
respiration (resp = b-w)

dw/dt=a -s—b- w, 8)

with surface area (s), plant weight (w) and a and b being species-specific factors.
According to Rubner (1931), who assumed geometrical scaling, surface area s (leaf
area, surface area of animal lungs or intestines) can be expressed as weight raised to

the power of 2/3 (s o w*?). Assimilation is proportional to w”?, while respiration
is proportional to weight. Consequently, (8) becomes

dw/dt:awz/3 —bw, )

with the generalised allometric exponent o ,, = 2/3 and species-specific allometric
factors a and b. The S-shaped yield function, which results by integration of growth
function (9)

w=A(1-c"")’ (10)

appeared too unflexible, so that von Bertalanffy (1951) and later Richards (1959)
generalised (9) to

dw/dt = aw™ — bw, (11)

which yields in integrated form

w=a(l —e)T (12)

and is the most widely applied function for describing growth processes.

When this function is fitted to observed growth trajectories, e.g. by nonlinear
regression, the exponent 1/1 — m reflects the allometric relationship behind the
described growth process. Geometrical scaling, where m = 2/3 (cf. (11)) would
yield 1/1 —m =3, which reflects that von Bertalanffy’s original function is
a special case of the Richards equation. For comparison, fractal quarter power
scaling with m = 3/4 results in 1/1 — m = 4. If regression analysis would yield
1/1 —m =2, that would indicate for the underlying surface-weight allometry
s o w*, a half part fractal scaling, as then m = o5, = 1 — 1/2 = 0.5.
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Fig. 5 Hypotheses about (a) the plant surface area-weight allometry s o w with o, =1/2, 2/3,

Jn
and 3/4 in the double-logarithmic grid and (b) the resulting yield functions y = A (l = e"”’) =
with 1/1 —m = 2, 3 and 4, respectively

Figure 5 shows (a) for og,, = 1/2, 2/3, and 3/4 different allometric relationships
between plant weight and surface area and (b) the effect of the different scaling
assumptions on the S-shape of the resulting yield curve. The biomass at the point of
inflexion wy lies at w; = A m(!/1=") which shows how the supposed allometry
determines the form of the sigmoid yield curve. The term w;/A = m('/!=") repre-
sents the biomass at the inflexion point relative to the maximum possible (asymptote)
biomass A. Itis 0.25 of the asymptote in the case of one half power scaling (o = 1/2),
and 0.296 and 0.316 in the case of geometrical and fractal scaling with o« = 2/3 or
3/4, respectively (1/1 —m =2, 3, and 4 respectively). Numerous analyses of
growth curves with 1/1 — m-values between 1 and 4 underline a considerable indi-
vidual, species-specific and site dependent variation (e.g. Kahn 1994; Murray and
von Gadow 1993) in basic allometric relationships. Suppose the three curves repres-
ent neighbouring individuals or species in a stand, the differences of their allometry
and yield curves would have considerable consequences for their competition.

3 Allometry on Stand and Community Level: Linkage
of Production and Growing Space Requirements

As plants grow in size, their demands on resources and growing space increase. If
resources are no longer sufficient for all individuals, self-thinning commences, and
the number of plants N per unit area decreases (Fig. 6). Although the principle of
allometry was derived for individual plants, its application to stands or plant com-
munities in which self-thinning occurs, is of high value in plant ecology and forestry
(Enquist and Niklas 2001; Pretzsch 2002, 2006; Weller 1987, 1990; Zeide 1987).
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Fig. 6 The common principle
of Reineke’s rule (1933) and
the —3/2 power law by Yoda
et al. (1963) for evenaged
plant populations. The
relationship between average
plant size or average weight
and plant number forms a
straight line in a double-
logarithmic scale. The upper
and lower straight lines
represents the self-thinning
line of the plant populations
A and B and delineate the
decrease of plant number
under optimal respectively
poor site conditions. Before
crown closure the population
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3.1 Linkage of Production and Growing Space Requirements

Suppose the size of a certain organ, e.g. the crown projection area (cpa), shows an
allometric relationship with the size of the total tree, e.g. the biomass weight w

w o cpa”. (13)

Let us suppose furthermore, that the crown projection area cpa represents the
growing space (s) and resource requirements (r) of a tree (cpa o< s o< 7). Then, (13)
equals w o< s* or w o< r*. As an individual’s growing space or resource demand is
hard to assess, the relationship was mostly postulated and analysed on stand
respectively mean tree level

w o 5P (14)

with mean plant weight w and mean plant growing area 5. The mean growing area
5(5=A/N, with A = unit area, e.g. hectare, N = tree number) is used as surrogate
variable for the mean lateral crown extension and resource demand of a plant.
Thereby, (14) represents a linkage between biomass production of the mean tree
and the required growing area or resources, respectively. In other words, (14)
couples production ecology with population ecology (Zeide 1987).

As the average growing area § is the inverse of number of plants N (5 &< 1/N),
(14) can be written as w o N~#. Latter forms the basis of the self-thinning rule,
which is shown in Fig. 6 in schematic representation on the double logarithmic
scale (In(w) o< —fIn(N)). The upper self-thinning, or limiting boundary line
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(solid line), marks the maximum possible density for a species at a given average
plant size, or weight in even-aged pure stands under optimum site conditions. The
lower self-thinning line (dashed line) marks the characteristic boundary relation-
ship for any stand under suboptimum growing conditions. Given two stands A and
B growing under optimum and suboptimum conditions, respectively, the size—
density relationships of each stand initially approximate their stand-specific self-
thinning lines, and, subsequently, follow this line. The lines may have different
absolute levels, but possess similar slopes (Pretzsch 2002).

3.2 Reineke’s Self-Thinning Line

For the relationship between tree number N and quadratic mean diameter dq in fully
stocked, even-aged forest stands, Reineke (1933) defined the “stand density rule”

N =bdy~ "%, (15)
Reineke’s rule can be represented on the In—In scale as a straight line
InN =b"—1.605 Ind, (16)

with the intercept b’ = In b and the slope fig = —1.605 (note that we substitute o as
the allometric exponent on individual plant level by f for the stand level: the
subscript R stands for Reineke). Reineke obtained this scaling rule by plotting d,
and N for untreated forest inventory plots in the USA on a double-logarithmic grid.
He found very similar allometric exponents for various tree species, stand struc-
tures, and sites, and hence, concluded that the rule had a general validity of
Br = —1.605 for forest stands. Reineke’s rule has gained considerable importance
for the quantification and control of stand density, and for modelling stand devel-
opment in pure (Ducey and Larson 1999; Long 1985; Newton 1997; Pretzsch 2009;
Puettmann et al. 1993; Sterba 1975, 1981, 1987), and mixed stands (Puettmann
et al. 1992; Sterba and Monserud 1993).

Reineke (1933) used the allometric exponent fig = —1.605 to develop his stand
density index SDI =N (25.4/dy)~ 1605 The SDI describes stand density in relation
to the quadratic mean diameter d, and the number of trees per hectare N by
calculating the expected number of stems per hectare for a 10-inches mean
diameter (= 25.4 cm; 1 inch = 2.54 cm). In Europe, an index diameter of
25 cm is used, so that

SDI = N(25/dy) ™" (17)
Stand density indices at maximum stocking densities vary according to the spatial

requirements of tree species and site characteristics (Pretzsch 2009, pp. 271-273).
Whereas, one can expect 900-1,100 trees per hectare with a quadratic mean
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diameter of dy = 25 cm in a Norway spruce stand with maximum stocking
density and optimal growing conditions, and similarly high values for Silver fir
and Douglas fir, the stand density indices for Sessile oak and European larch
are only about the half, with 500-600 trees per hectare. SDI values of 600—
750 trees ha™' in stands with a quadratic mean diameter of dq =25 cm are found
for Scots pine and European beech.

According to Zeide (2004, p. 7), Reineke’s density assessment with the SDI «. . .
may be the most significant American contribution to forest science. ..”. But, Zeide
like von Gadow (1986), von Gadow and Franz (1989), and Pretzsch and Biber (2005)
questions the general validity of exponent fig = —1.605. Last-named authors
re-evaluate Reineke’s rule based on 28 fully stocked pure stands of European
beech, Norway spruce, Scots pine, and Sessile oak in Germany, which have been
inventoried since 1870. Figure 7 shows the In(N)— In(d,)-relationships for European
beech, Norway spruce, Scots pine and Sessile oak. OLS regression of the model
In(N) = b’ + frln(dy) results in values of fr = —1.789 for European beech, —1.664
for Norway spruce, —1.593 for Scots pine and —1.424 for Sessile oak. The allometric
exponent for European beech differs significantly from the other species. There is
also a significant difference between the fig-values for Norway spruce and Sessile
oak. With the exception of Scots pine, the allometric exponents deviate significantly
(European beech) and almost significantly (Norway spruce, Sessile oak) on a p =
0.05 level from the exponent fr = —1.605, postulated by Reineke (1933). If this
species-specific allometry is ignored, serious errors in the estimate and control
of density may be the consequence when using the SDI (cf. Sect. 5). Physiologi-
cally, the species-specific allometric exponent fr demonstrates how strong a
species enforces self-thinning for a given increase in diameter, or, in the words
of Zeide (1985), the species’ self-tolerance. According to the results from above,
European beech exhibits the highest self-thinning, or lowest self-tolerance, and
Sessile oak, the lowest self-thinning, or highest self-tolerance as defined by
Zeide (1985).

N (trees/ha)

1000,000 4
E \ _— E beech
N
100,000 | N
10,000 4

Fig. 7 Species specific 3
In(N)-In(d)-relationships for
untreated, fully stocked, pure 1.000 :
European beech, Norway ’ E
spruce, Sessile oak, and Scots :
pine stands in Bavaria/South
Germany under survey since 100
1870 (Pretzsch and Biber 0.1

2005)
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3.3 The —3/2-Power Rule by Yoda et al.

With no knowledge of the stand density rule by Reineke (1933), the Japanese
scientists Kira et al. (1953) and Yoda et al. (1963) discovered the —3/2 power
rule of self-thinning, initiating probably the most prominent controversial dis-
cussion of a scaling rule. It describes the relationship between the average shoot
weight w and the plant number N per unit area in even-aged and fully stocked
mono-specific plant populations as

(18)

with the species invariant scaling exponent fv = —3/2. Yoda et al. (1963) assume
that plants are simple Euclidian objects, and all plant parts are related to each other
isometrically. Effectively, Yoda’s allometric coefficient —3/2 is based on the cubic
relation between plant diameter d and biomass w '

w o d? (19)
and the quadratic relation between d and occupied growing area §
5o d?. (20)

As average growing area § is the inverse of number of plants N (5 = 1/N),
(20) can be written as

N ocd™? 1)

or d o< N='/2. By inserting (21) in (19) and rearrangement, we get w (N“/z)3
oc N73/2 (cf. (18)). Equivalently, shoot biomass per unit area W scales over plant
number N as W o< N='/2, since W = wN, W o« NN=/2 o« N=1/2, Equation (21) is
similar to Reineke’s (1933) formulation of the stand density rule, but predicts a
Reineke exponent of fg = —2 instead of -1.605.

Harper (1977, p. 183) attested the —3/2 power law, a validity for annual plants
and forests as well. White (1981, p. 479) even saw the “empirical generality of the
rule ... beyond question”. And among others, Long and Smith (1984, p. 195) titled
it“... atrue law instead of the mere rule...”. A quarter of the century after the first
euphoria concerning the law, Begon et al. (1998, p. 169) revise their approving
attitude towards the law and plead for detection of inter-specific characteristics in
their allometry.

For w o N#¥, Pretzsch (2006) revealed by OLS regression fiy = —1.403,
—1.614, —1.575 and —1.592 for European beech, Norway spruce, Scots pine and
Sessile oak, using a broad dataset of real time series of un-thinned long-term
experimental plots in Germany. The formulation of the Yoda rule with the exponent
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Py on the side of the stem number results in an increase in the self-thinning
(decrease in self-tolerance) in the order: European beech, Scots Pine, Sessile oak
and Norway spruce (cf. also Pretzsch 2006).

Unlike herbaceous plants, many tree species develop a stem with a core of inert
heartwood, which may comprise a considerable proportion of the tree’s total
biomass. For a better comparison between woody and herbaceous species, it
may be helpful to distinguish between dead and living tissue. In Pretzsch
(2005), functions for the estimation of biomass and sapwood area, and a stereo-
metric model for distinguishing stem sapwood from dead heartwood are devel-
oped for European beech, Norway spruce, Scots pine and Sessile oak. The results
showed that considerably smaller differences between the species self-thinning
line occur with W', representing living and not total biomass. The allometry
W oc NP provided values of f/ = —1.396, —1.365, —1.447, and —1.369, respec-
tively. With other words, the heartwood elimination yields a less biased slope
B and improves the comparability between the scaling rules for woody and
herbaceous plants (Pretzsch 2005).

Comparison with the geometrical scaling exponent, f = —3/2 postulated by
Yoda and fractal scaling slopes f = —4/3 expected by Enquist et al. (1998, 1999)
and West et al. (1997, 1999) show that observed slopes /3 deviate considerably from
the generalised exponents. However, values for ' show that the elimination of inert
heartwood shifts allometry remarkably towards fractal scaling. This evaluation is
not shown in order to argue for an overarchmg validity of the quarter (1/4 exponent)
scaling, but to underline that heartwood’s elimination may yield a less biased slope
p’, improves comparability between woody and herbaceous plants’ scaling rules
and paves the way for a more circumspect application of self-thinning slopes for
density estimation, density control and growth prediction.

The difference in the exponents from Reineke and Yoda arises from the
different allometry between quadratic mean diameter and mean plant weight.

By rearranging the Yoda rule to N o< w'/v, and substituting it in Reineke’s rule,

N d_ , one obtains w!'/Av oc dg oW d v - The original exponents from
Yoda and Reineke result in an exponent of w o< a’ (Pretzsch 2009, p. 404)
and Reineke’s rule becomes just a special case of Yoda’s. For the four species
considered above, the relation produces exponents of 2.508, 2.686, 2.509
and 2.267 for European beech, Norway spruce, Scots pine and Sessile oak,
respectively.

3.4 Self-Thinning Versus Alien Thinning

The slope ﬁN,dq of Reineke’s self-thinning line In(N)—In(d,) reveals the self-

tolerance of a tree species growing in pure stands (Zeide 1985). The larger the
ﬁN_dq—value, the lower the number of dying trees AN/N for a given diameter
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increment Ad/d will be and the greater the self-tolerance of the species in pure
stands (cf. (2) and (3)). The ranking we revealed for the mean species- specific,
By q,-values European beech (—1.789) < Norway spruce (—1.664) < Scots pine
(—=1.593) < Sessile oak (—1.424) expresses that in comparison to Norway spruce
and European beech, Sessile oak and Scots pine are more tolerant with trees of the
same species. For instance, in European beech stands, a mean diameter increase of
1% causes a decrease in the number of stems by 1.79%. Given the same diameter
increment, the decrease in the number of stems is 1.66%, 1.59% and 1.42% for
Norway spruce, Scots pine and Sessile oak respectively, that means 7%, 11% and
21% lower than for European beech. This underlines the low self-tolerance of
European beech and its space consuming investment strategy. The causes for this
are its wider and more dynamic lateral crown extension, which were already
discussed in Sect. 2.1 (cf. Fig. 3).

For mixed stands on comparable sites, mean ,BNd -values determined for

European beech, Norway spruce, Scots pine and Sess1le oak came to [3Nd —
—0.40, —1.02, —1.06 and —2.01 respectively, which indicates a reversal of the
ranking in pure stands, i.e. European beech > Norway spruce > Scots pine >
Sessile oak (Pretzsch and Biber 2005). Compared with pure stands in which
self-thinning (intra-specific) decreases tree number, in,mixed stands where alien-
thinning (inter-specific) occurs, ﬁNd of European beech, Norway spruce and
Scots pine increases, while that of Sessile oak decreases. Great crown expansion
and space occupation abilities under intra-specific conditions (e.g. European
beech) evidently guarantee great assertive power in the mixed stand. Low
space occupation effectiveness in the pure stand (e.g. Sessile oak) is obviously
combined with low assertive power in the mixed stand. This underlines, that
allometry is species-specific and depends not only on size, but also on external
factors (Fig. 2) and is crucial for the competitiveness and success of a species in
pure and mixed stands.

4 Discussion

In the previous sections of this chapter, it was shown (1) that allometric research
built up a valuable set of hypotheses and methods for analysing size of organisms
and its consequences for their shape and functioning, (2) that empirical findings on
organ, plant, population and community level give evidence, that allometric expo-
nents vary in a rather narrow corridor, and (3) that it is not a single allometric
exponent that carries the overarching validity but the variation within this corridor
in dependence on species, environmental conditions, and resource supply. In the
following discussion, the attention is drawn to methodological obstacles of allome-
tric research, the limited benefit of hunting for general allometric rules or universal
exponents, and finally to the profile of allometric research.
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4.1 Methodological Considerations and Obstacles

From the broad range of methodological considerations when analysing allometric
relationships and extracting allometric exponents, the following are probably the
most relevant.

4.1.1 Real Versus Artificial Time Series as Source Data

The most appropriate way of analysing allometry is to record the size and form
development of individuals over time by repeated measurement. By long-term
measurement of the height—diameter development or by its reconstruction on the
basis of stem analysis, e.g. analysis of a permanently dominant tree, we may get the
dynamic h—d-allometry shown in Fig. 8a (solid line). Under stress similarity or
elastic similarity, we may reveal for this tree & o< d*< with « = 0.5 or 0.66,
respectively (Niklas 1994, p. 165).

However, often longitudinal data about the development of individuals or stands
are not available. In such cases, the static height—diameter value pairs of a stand at a
given age or in a given period (data points and broken line) are used for fitting the
relationship In(k) = a + oln(d) and the resulting slope o, 4 is interpreted as

a b
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Fig. 8 Estimation of bivariate allometric relationships from longitudinal data (continuous line =
real time series) and cross section data (broken line = artificial time series) in schematic
representation for (a) the tree-height-diameter-allometry and (b) Reineke’s self-thinning line (a)
The slope of the cross section analysis is shallower, as suppressed trees in a stand enhance height
growth (upward arrows) (h o d*% versus h < d®7). (b) Slope from long-term survey and undis-
turbed fully stocked stands is often shallower compared with slopes from cross section inventory
data, as latter includes density reduction by disturbances (downward arrows) (N o oiq_]‘7 versus
N o dy 29
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allometric exponent. Such a substitution of cross section data for a real time series is
often misleading as the height—diameter-relation of trees in a given period, which
reflects rather the trees long-term form and shape adaptation to competitive stress
than the size-dependency of their form development. In the face of competition,
especially the dominated or even suppressed trees in a stand (data points on the left)
increase height growth as against stem diameter growth (Pretzsch and Schiitze
2005). So, the analysis on the basis of cross section data (broken line) results in a
more shallow slope compared with the slope resulting from a permanently domi-
nant tree (solid line). The two approaches are often mixed with each other, however,
carefully applied they can serve to separate size dependent from competition
dependent form development (Weiner 2004).

While on tree level, stem analysis or increment cores can be used to reconstruct
size and shape development and reveal allometric trajectories, on stand level
records of undisturbed and well-documented long-term development like those
underlying Fig. 7 are very rare. So, for analysis of stand level allometry, mostly
spatially adjacent stands of different ages but equal site conditions (artificial time
series) substitute real time series (Enquist and Niklas 2001, Reineke 1933). How-
ever, in view of the longevity of forest stands, effects of environmental changes,
disturbances like wind-throw, ice-breakage or insect calamities, which are not
always documented may often be hidden in the given stand structure, so that it
reflects rather the result of disturbances and adaptation than the size dependent
allometric trajectory expected under undisturbed conditions.

4.1.2 Regression Techniques

When scaling exponents and scaling coefficients are computed, either Model I
(ordinary least square regression, OLS) or Model II (reduced major axis regression,
RMA) are applied. Zeide (1987) and Niklas (1994) argue that RMA regression
(Model 2) represents the “true relationship” between the variables, as RMA slopes
of x on y are exactly the inverse of those of y on x. Neither approach necessarily will
produce exactly the same results, unless the In(y)— In(x)-pairs form a perfectly
straight line. Sackville Hamilton et al. (1995) showed how slope estimates of OLS-
regression, PCA and RMA-regression algorithm converge with increasing r* (coef-
ficient of determination). From the examples presented in this chapter, regression
yielded always r* > 0.9, and the differences between OLS and RMA slopes had no
decisive effect on the final results. To take these methodological differences into
account, especially when r* < 0.9, various methods should be applied to the dataset
in question (Matthew et al. 1995, Sackville Hamilton et al. 1995).

4.1.3 Using Log-Transformation

The statistical analysis and extraction of allometric factors (a, b, . . .) and allometric
exponents (o, f3, - - - ) is mostly based on log- or In-transformation of the observed
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data and subsequent OLS-regression, PCA or RMA-regression. Arguments for this
approach are that the effect of outliers on the result is reduced and that after
transformation, the data meets the statistical assumptions of normal distribution
and homoscedasticity. But logarithmic transformation involves the risk that rela-
tionships are erroneously assessed as linear as there is a linear bias of human
perception, which is hard to overcome (Smith 1980). One should always keep in
mind, that hardly visible differences of log-values of 4.5 and 5.0 mean a difference
on the linear scale between about 32,000 and 100,000.

Analysing the self-thinning rule Zeide ((1987); Figs. 1-4) found that the In(N)—
In(d,)-relationship is often concave seen from below, although that is hardly visible
in the double-logarithmic grid. However, application of model In(N) = a; + a,
In(dq) + a3 In?(d,) and analysis, whether as-values are negative or positive may
reveal a concave curve, as seen from below, or a convex curve (Pretzsch 2006).

4.1.4 Transition from Plant Level Allometry to Stand or Community Level

Most studies equate without demur the allometric exponent o, between the
individual plant variables y and x with the respective exponent f5; ; between the
same variables on mean tree or stand level. However, when individual plants follow
a, -scaling, that does not necessarily imply, that the mean tree or stand characteri-
stics behaves similar. If the relationship between y and x is nonlinear (o, . # 1.0)
and not all x-values are equal, then holds > x;*/n #(>_ x;/n)*. In other words,
even if we find a constant allometric exponent a, . on tree level, we find a different
one on mean tree level as the mean for (individual size)” does not equal (stand mean
size)®. For the relationship between leaf weight and tree diameter, Pretzsch and
Mette (2008) showed that the differences between allometry on individual and
mean tree level depends on the shape and development of the size frequency
distribution of the stand. Blake et al. (1991) and Ford (1975) analysed the same
phenomenon with respect to other plant and stand size variables.

A flawless transfer of allometry exponent « from individual level to stand level
requires either o = 1 or a steady shape of the frequency distribution of size x during
the stand development. When « # 1, we have to reckon with differences between
plant and stand allometric exponents; the more heterogeneous and variable the
frequency distribution of x, the greater is the difference between both levels of
observation. Only if these differences are always of the same relative magnitude,
this alters only the allometric factors (a, b, ...) and not the allometric exponents
(o, B,...). However, normally the shape of the size distribution changes over
time, due to growth, loss of individuals etc., thereby causing a difference between
o and f.

Since the beginning, forest science is aware of the fact that the development of
arithmetic mean diameter or height of a stand has two components, the size growth
of the individual trees and the increase of the mean by prevailing loss of thin trees
and coupled calculative upward shift of the mean. So, the development of the mean
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is an artificial course for the description of stand growth, and does not represent
individual growth. In order to give mean size development a higher stability, forest

science uses, e.g. the quadratic mean diameter dy = \2/(d12 +d?+ -+ d2)/n

instead of the arithmetic mean d = (d; +dy + - - - + dn)/n. Especially in the case
of Reineke’s self-thinning law with allometric exponents close to —2, the quadratic
mean stabilises the transition from tree to stand level. When y scales with a power
of 2.0 to x (y xz), then the mean for (individual size)2 equals (stand mean size)2
as in this special case, when scaling exponent and weighting approach are similar,
applies > x*/n =(3_x;/n)" asyq = /(0,2 + x22 + - - - + x,2) /n and yqt = (0 2+
2 2
X7+ x,%) /0

4.1.5 Refined Elimination of the Size-Effect

Often, generalised theoretical or observed empirical allometric trajectories are
applied for elimination of the mere size effect from a plant or stand development
in order to differentiate site-specific allocation effects from ontogenetic size effects.
For this purpose, a certain size measure, mostly plant weight, has to be applied as
the independent variable (cf. Sect. 2.2.1). Due to practical applicability in forest
research, tree diameter or stem volume is often used instead of whole tree weight.
In order to scrutinize decide whether a formerly suppressed Norway spruce tree
after release follows the same allocation pattern as a neighbouring open-grown
spruce tree of the same size, we can use diameter or stem volume as a reference
measure. However, even if the trees possess the same diameter or stem volume,
they may differ considerably in other size or shape attributes (x;, xs, ... x,) like
crown length, crown width, root—shoot-ratio or sapwood-core wood-ratio, which
also determine the future growth of the open-grown and understory tree in a
very different way. Such multivariate size differences cannot be quantified
by simple univariate regressions, but require multiple approaches like
In(y) = a+blIn(x;) + cln(xy) - - - + nln(x,). At this point, we leave the reduction-
istic and simplistic realm of allometry and face the complexity of the real world.

4.2 Allometry as General Allocation Principle?

In the beginning, allometry and the respective methods were perceived as an
approach for taking account of differences in absolute size and thereby induced
changes in organ proportions, interpreting inherited, size induced form and shape
developments as adaptive reactions to specific environmental conditions (Huxley
1932), and deriving growth and yield processes in dependence on first-order

processes like surface-dependent assimilation and volume-dependent respiration
(von Bertalanffy 1951).
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Subsequently, allometric research was driven by the striving for general rules,
laws or biological constants. The search stretched over organ, individual and
population level aiming to reveal overarching principles, which are so rare in
biology and ecology compared with physics, mathematics or chemistry. Because
of their ecophysiological significance, allometric exponents have been discussed
strongly ever since (Pretzsch 2000).

The most prominent Euclidean 1/3 exponents and fractal 1/4 exponents were
introduced in Sects. 1.4, 3.2, and 3.3. Evidence against a universally validity of
Reineke’s, Yoda’s or Enquist’s allometric exponents was raised in this chapter and
is supported by solid literature (Yoda: Harper 1977, p. 183; Long and Smith 1984,
p. 195; Weller 1987, 1990; Sackville Hamilton et al. 1995, Reineke: Pretzsch and
Biber 2005; von Gadow 1986; del Rio et al. 2001; WBE: Whitfield 2001;
Kozlowski and Konarzewski 2004; Reich et al. 2006).

The author’s perception of allometry corresponds with Zeide’s (1987, p. 532)
conclusion after analysing Yoda’s rule: “... unlike the fixed value of —3/2, the
actual slopes convey valuable information about species . . . that should not be cast
away”, or Weller’s (1987, p. 37) statement that “The differences among slopes may
provide a valuable measure of the ecological differences among species and plants,
and a powerful stimulus for further research”. As long as allometry searches for
universal constants, it may still our innate propensity to reduce complexity and
generalise. However, in my opinion, the mere hunting for general rules or laws
hardly contributed to a better differentiated understanding of plants and stands, but
it rather maneuvred allometric research somehow into a I’art pour I’art phase and
isolation from related disciplines.

4.3 Changing Profile of Allometric Research

With respect to spatial and temporal resolution, the allometric approach to plant and
stand growth lies between a simple statistical description of relationships and a
deeper mechanistic causal explanation. Due to its simplistic approach (striving for
overarching exponents and leaving the rest as white noise), the results of allometric
research are difficult to integrate in both, the system knowledge of neighbouring
disciplines as well as practice. While neighbouring disciplines like plant physiology
need differentiated and not general explanatory schemes, also for practical purposes
universal laws may yield first-order estimates, but are surely not sufficiently precise
for hard economic decisions (cf. Sect. 5). Model hypotheses for data interpretation
or prognosis models for use in practice, for instance, do not employ such genera-
lised exponents.

The numerous falsifications showed that the allometric exponents tend to lie in a
narrow corridor, but can be species-specific or even provenance-specific and site-
dependent. The individual species’ scaling exponents and their relative position in
the corridor are the keys for understanding the species’ ability to cope with the site
conditions and competitive situation and should not be cast away, although
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generalisation across species is tempting. In this sense, falsification trials
concerning the rules from Reineke, Yoda and West, Brown and Enquist are turned
into a refined understanding of individual species allometry, and overarching
scaling exponents would appear as a stimulating myth.

Recent approaches to link APT with OPT may change the profile into a more
pluralistic approach aiming at an integrated understanding from both, the inherited
evolutionary optimised size induced form as well as the shape development caused
by the adaptive reactions on specific environmental conditions, which are revealed
under selective pressure (Fig. 2).

5 Conclusions

5.1 Avoidance of Practical Application of Inaccurate
and Imprecise General Scaling Rules

Crown diameter—stem diameter allometry on individual tree level, e.g. unmasks that
European beech is more expansive and space consuming with increasing size com-
pared with the cone-like vertically growing Norway spruce. On stand level, this is
reflected by a more rapid self-thinning in pure beech stands and a more moderate
decline of competing neighbours in Norway spruce stands. European beech’s superi-
or gap dynamic and shade tolerance means competitive strength facing other neigh-
bouring species in mixed stands. However, in pure beech stands, this rigorous space
occupation is directed against members of the own species.

The argument that rough general rules are required for scaling from organ to
community level again is tempting. However, for example the general assumption
of Enquist and Niklas (2001) shows that tree number scales as —2 power of mean
tree diameter can cause considerable flaws in modelling and prognosis.

Suppose in a juvenile Sessile oak stand with a mean diameter of 1 cm and a tree
number of 22,027 per hectare, self-thinning starts off with the generalised slope of
,BNydq = —2.0, then N =22,027 a’q_z'0 yields three oak trees per hectare in the
mature stand with mean diameter d, = 80 cm. Compared with this, the empirically
found species-specific slope :BN,dq = —1.424 predicts 43 trees per hectare, which is
more than ten times of the theoretical stand density and more in accordance with
silvicultural experience. Such differences matter when silvicultural prescriptions
are based on scaling exponents.

5.1.1 Stand Density Management Diagrams as Silvicultural Prescriptions
In view of the individual species’ slopes, stand density estimation algorithms,

founded on generalised allometric relations, appear unsuitable. Stand density
management diagrams (SDMD), which are applied for many species as tool for
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regulating stand density, use the self-thinning line as upper boundary and are the
most prominent silvicultural application of the self-thinning rule (Oliver and Larson
1996, pp. 352-353).

Figure 9 shows a stand density management diagram (SDMD) for boreal con-
ifers (adapted from Weetman 2005, p. 7) with four different thinning regimes
quantified by the stem number—mean volume trajectories (shown in the In—
In-scale). The upper boundary line (solid black line) represents the maximum
stand density under self-thinning with a species-specific allometric factor and
exponent. The area below the line gives the scope for possible tree number—mean
volume relationships. All the four trajectories 1-4 commence with dense natural
regeneration, but subsequently represent different stand densities. Trajectory 1
describes un-thinned stand development yielding high total volume at low cost,
but with a low mean tree volume. Trajectory 2 describes moderately dense stands
established by frequent light commercial thinning to maximise volume production.
In trajectory 3, a moderate pre-commercial thinning at early stand age reduces the
high initial density to about half of the tree number. Trajectory 4 applies a heavy
pre-commercial thinning, reducing the tree number to nearly the final level. In this
context, pre-commercial is used as attribute for thinnings, which are executed in a
stand development phase when stem dimensions of the removed trees are still so
small that revenue does not yet cover the expense.

Bégin et al. (2001) list for a considerable number of tree species available
SDMDs as guides for stand management. When those SDMDs ignore species-
specific allometry but apply generalised scaling exponents, flawed density control
and counter-productive thinning can result.
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5.1.2  Stand Density Index by Reineke

The strength of SDI as a measure of density (cf. (17)) is that it takes mean diameter
and number of tress into account (Zeide 2004). The mean diameter serves as an
expression of the allometric size development of the mean tree and stand. The pure
size-dependent change of tree number is eliminated by the SDI, and makes it a
suitable measure for density evaluation and for comparison of stands in different
stand development phases. The underlying approach for elimination of size-effects
on density (cf. (17)) is analogous to the approach introduced for individual tree
level in Sect. 2.2.1 (cf. (7)).

The disadvantage of the SDI is that for elimination of size-effects, it generally
assumes the coefficient f = —1.605 to be valid. Wherever this allometric coeffi-
cient fails to apply, there will be severe errors in stand density estimates. This
chapter shows that in untreated fully-stocked pure stands of European beech, the
B-value is lower than the generalised Reineke value B = —1.605. Although the
deviations from —1.605 are only close-to-significant for Sessile oak and Norway
spruce, our results concerning differences among species suggest that at least one of
these species’ slopes differs from Reineke’s generalised value, too.

If species-specific allometry is ignored, serious errors in the estimate and control of

density when using the stand density index SDI = N(25/d,)™"%"" may be the conse-
quence (Pretzsch and Biber 2005). The use of Reineke’s rule and SDI with p =
—1.605 for determination of maximum density in planning (Sterba 1975, 1981, 1987),
control of stand density in the course of thinning operations or modelling of stand
development (Pretzsch et al. 2002, 2008) is therefore called into question. For the SDI
in Norway spruce stands, Sterba (1981), using the Bavarian yield tables for Norway
spruce by Assmann and Franz (1965) and assuming f§ = —1.605, calculated mean
values of SDI = 970, 1,081, 1,203 and 1,336 for sites with 28,32, 36 and 40 m top
height (tree height associated with the quadratic mean diameter of the 100 tallest trees
in a stand) at age 100 years. These values are quoted here to illustrate the extent
to which values may be biased when erroneous f-values are being used. Assuming we
determine, according to Reineke, the SDI of a stand with mean diameter 10 cm
to be 1,300, assuming further that this stand actually follows a straight line with
B = —1.805, then the determined SDI of 1,300 would have to be reduced by k= 0.83.
The correction of the bias would therefore signify a shift of values from the upper
end (SDI = 1,300) to the lower end (SDI = 1,079) in the range of SDI values
observed in Central European Norway spruce stands (Pretzsch and Biber 2005).

5.2 Research Perspectives

In comparison with ecophysiological and biochemical processes, which are far
from being thoroughly understood, size and structure of plants are much easier to
measure. Since there is a close feedback between structure and process, organisms’
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size and structure can become the key for revelation and prognosis of stand
dynamics. Due to the uncomplicated possibility of their spatial explicit measure-
ment (e.g. compared with grassland and agricultural crops), organs of forest trees,
whole trees, stands and communities are best suitable for revealing and tracing
allometry over various levels of system organisation.

As provisional approaches for urgent upscaling climate change C-storage esti-
mations for instance, even imprecise and inaccurate allometric relationships may be
helpful. However, rest and faith in such general scaling rules would pass up the
opportunity of a better understanding of ecosystem structure and functioning.
Rather than continuing to search for “the ultimate law”, further research should
exploit the potential, which lies in a differentiated allometry between species, site
conditions, competition, disturbances etc. in order to systemise it, integrate it in
system knowledge and apply it for mechanistic understanding of plant growth.

One focus might be on a systematic revelation of plant and stand allometry with
regard to different species, provenances, clones, and under varying site conditions,
competitive status in pure and mixed stands and under disturbances. The concept,
methods and at least a part of the data base for such an inventory are available.
Methodological shortcomings of previous analysis like neglection of the dead inner
core of trees, equation of individual and stand allometry, univariate description and
imperfect elimination of size-effects can be considered. Maybe a plant’s or stand’s
allometry reveals rather its tricks and traits of optimising fitness in relation to
neighbours or other stands than a random deviation from a general rule. A system-
atic analysis, ordering and causal explanation of different allometry exponents is
missing so far. A closer analysis of the species-dependency of allometric exponents
and their determination by internal and external factors might provide an important
link between plant genetics and physiology on the one and plant and population
biology and morphology on the other hand. Allometric research should strive for a
closer link to plant physiology and modelling to integrate the existing knowledge in
order to find mechanistic links, causal explanations. Closer connection with stand
ecology and forest dynamics would help to separate between internal and external
factors and avoid to misinterpret the effect of disturbances as allometric patterns.
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