

Mean annual volume growth m³ ha⁻¹ yr⁻¹ on long-term experiments across Europe since 1860

Time of establishment and main questions of long-term experiments in Bavaria

Establishment of a new generation of species mixing experiments from 2017-2023 on about 120 ha with factors: species, site conditions, mixing patern, stand density

Long-term experiments in forests. Essential for facts on stand dynamics and evidence of human influence

Hans Pretzsch

Chair for Forest Growth and Yield Science

Technical University of Munich

http://waldwachstum.wzw.tum.de/index.php?id=presentations

- 1 Tradeoff between thinning effects on tree size growth and stand volume production
- 2 Overyielding of mixed-species versus mono-specific stands
- 3 Biomonitoring of growth trends driven by environmental change

http://waldwachstum.wzw.tum.de/index.php?id=presentations

Self-thinning variant on the long-term thinning experiment in Norway spruce FFB 612, South Bavaria, Germany

Revelation of self-thinning lines (green) on long-term thinning experiments with different treatment variants

Waldwachstumskunde Systemanalyse

From thinning trials to density-productivity relationships

Tradeoff between stand productivity and mean tree growth on Scots pine combined spacing-thinning trial WEI 611

ТЛ

Long-term experiments record self-thinning, remaining and removal stand, total production, density-productivity relationship, and tradeoff between stand and mean tree

Experimental setup for scrutiny of mixing effects Zwiesel 111/3,4,5 Bavarian Forest

 $p_{1,2}$ compared with $p_1 \times m_1 + p_2 \times m_2$

Meta-analyses of overyielding in mixed vs. pure stands

Norway spru	n beech		sessile oak	sessile oak - European beech						
experimental plot		relative	e difference [95% Cl]	experimental	plot	relat	relative difference [95% CI]			
Concise Waldbrunn 106 Gryfino 35 Dhronecken Gryfino 33 Ebrach 132 Waldbrunn 105 Main-Tauber 86 Jossgrund 151 Ebrach 133 Hochstift 619 Schluechtern Hochstift 618 Balmis Hochstift 617 Eichbuehl Rothenbuch 801 Kelheim 804 Rohrbrunn 314	┰═╤╶┠┵┝┿╼╦╶╽┷╵╽ ╵		0.73 [0.60 , 0.89] 0.84 [0.81 , 0.87] 0.86 [0.78 , 0.94] 0.95 [0.81 , 1.11] 0.96 [0.86 , 1.07] 0.97 [0.75 , 1.25] 1.00 [0.91 , 1.11] 1.04 [0.99 , 1.10] 1.12 [1.02 , 1.22] 1.23 [0.96 , 1.58] 1.24 [1.07 , 1.43] 1.27 [0.95 , 1.69] 1.30 [1.19 , 1.42] 1.42 [1.32 , 1.52] 1.48 [1.35 , 1.63] 1.80 [1.30 , 2.49] 2.24 [1.88 , 2.67] 2.43 [1.96 , 3.01] 2.53 [1.90 , 3.37]	Ehingen 51 Wiedemann Mitterteich 101 Westerhof 131b37 Westerhof 131b31 Wieda 114 Zwiesel 111 Uslar 57 Daun 1207 Zwiesel 134 Knobben 44 1/2 NP 602 Daun 1206 Zwiesel 135 Geislingen 76 Morbach 1501 Freising 813 Nordhalben 811 Murten 20 Schongau 814	, , ⊢		0.87 [0.71 , 1.0 0.95 [0.85 , 1.0 0.98 [0.93 , 1.0 0.99 [0.91 , 1.0 0.99 [0.91 , 1.0 1.05 [1.00 , 1.1 1.07 [0.99 , 1.1 1.11 [0.94 , 1.3 1.13 [0.94 , 1.3 1.14 [1.05 , 1.2 1.15 [1.03 , 1.2 1.15 [1.03 , 1.2 1.25 [1.00 , 1.5 1.30 [0.96 , 1.7 1.59 [1.30 , 1.9 1.70 [1.50 , 1.9 2.00 [1.68 , 2.3 2.02 [1.51 , 2.7	6] 6] 2] 7] 1] 1] 6] 4] 8] 5] 6] 6] 6] 2] 5] 4] 8] 5] 6] 2] 2] 2]		
RE Model	- - -	► 	1.24 [1.06 , 1.45]	RE Model	Γ	↓ 	1.19 [1.08 , 1.3	1]		
(a)	0.37 0.61 1.00 mixed stanc	1.65 2.72 4.48 I / pure stand		(b)	0.61 mixed	1.00 1.65 2.72 stand / pure stand				
cies	N. sp/	S. pi/	s. oak/	E. be/	S. pi/	E. la/	N. sp/	mean		
hination	E be	E be	E be	D_fir	N cn	N sn	s fir			

Species	11. SP/	2. pr	5. Out	L. 00/	2. pr/	1.10	1. sp/	mean
combination	E. be	E. be	E. be	D-fir	N. sp	N. sp	s. fir	
overyielding	21	30	20	11	21	25	13	
(± SE) in %	(± 3)	(± 9)	(± 3)	(± 8)	(± 11)	(± 6)	(± 6)	
corr. factor	1.10	1.20	1.10	1.10	1.20	1.20	1.10	1.10

Pretzsch, Forrester, Bauhus (2017) Mixed-species forests. Ecology and management, Springer, Berlin, 653 p

Effect of tree species mixing on stand density represented by self-thinning line and SDI

Mixing effects in terms of overyielding can emerge from stand density and can be eliminated by thinning

Amorosos and Turnblom (2006) Comparing productivity of pure and mixed Douglas-fir and western hemlock plantations, Canadian Journal of Forest Research 36:1484-1496

Long-term mixing experiments can reveal the effect of mixing on stand density, remaining and removal stand, and any overyielding in total production

Changes in the ranking and growth of different Scots pine provenances on long-term trials in Bavaria

Waldwachstumskunde Systemanalyse Degradation in the site fertility by repeated cultivation of Norway spruce in Saxonia revealed by long-term survey

G

Wiedemann E (1923, p 157, Tab. 1)

Changes of the total stand volume production on 577 long term trials in Europe since 1860

Growth trends of Scots pine in Europe

Scots

- a given total stand volume production and standing stock is reached 50 years early than 100 years ago
- at the age of 75 intermediate yield is 200 m³ ha⁻¹ while it was 75 m³ ha⁻¹ 100 years ago,
- this means an increase of intermediate yield by 150 %.

NORMAL YIELD TAI

٩		MAIN CROP After Thinning								Yield		
	Age	Number	Тор	Mean	Basal	Volun dia	ne (h. ft.) meter o.b	to top . of	Number	Meai		
	•	of Trees	Height feet	BHQG ins.	Area sq. ft. q. g.	3 inches	7 inches	9 inches	of BI	BHQ ins.		
	15 20	1650 765	27 <u>1</u> 36	2 ³ 4 3 ¹ 2	86 65	750 1020	-	-	885	3		
	25 30 35 40	478 333 250 199	44 51 57½ 63½	4 ³ 4 6 7 <u>1</u> 4 8 <u>1</u> 2	71 80 90 100	1380 1830 2330 2840	120 610 1500 2350	95 580 1420	287 145 83 51	4 5 64 712		
	45	166	69	9 3	110	3350	3015	2270	33	83		

Long-term experiments document growth trends, environmental changes, human impact on forests

Long-term experiments in forests. Essential for facts on stand dynamics and evidence of human influence

Hans Pretzsch

Chair for Forest Growth and Yield Science

Technical University of Munich

http://waldwachstum.wzw.tum.de/index.php?id=presentations

- 1 Tradeoff between thinning effects on tree size growth and stand volume production
- 2 Overyielding of mixed-species versus mono-specific stands
- 3 Biomonitoring of growth trends driven by environmental change

http://waldwachstum.wzw.tum.de/index.php?id=presentations

Thanks for funding by EU REFORM (# 2816ERA02S), CLIMO, CARE4C, BIODIVERSA DFG MStELF, MStU, BaySF

Thanks for provinding data to partner institutions in Sweden, Denmark, England, Poland, France, Germany Austria, Switzerland, Italy, Spain, and others

http://waldwachstum.wzw.tum.de/index.php?id=presentations