

Analyzing mixing effects on forest stand level

Hans Pretzsch Chair for Forest Growth and Yield Science Technische Universität München

http://www.wwk.forst.wzw.tum.de/info/presentations/

Lecture given on March 12th, 2012 at SLU, Alnarp, Sweden

Production Ecology Equation by Monteith (1977) as a start

Gross primary productivity = resource supply × proportion of resource captured × efficiency of resource use

Mixing effects may be caused by change in

resource supply

resource capture

resource use efficiency

Analyzing mixing effects on forest stand level

Hans Pretzsch Chair for Forest Growth and Yield Science Technische Universität München

- 1 Mixed vs. pure on total stand level
- 2 Analyses on species level
- 3 Allometric correction before causal analysis
- 4 Covariance analysis on species level
- 5 Components: Density, mean tree productivity

Lecture given on March 12th, 2012 at SLU, Alnarp, Sweden

Understanding and improved consideration of mixing effects in individual tree models

Analyzing mixing effects on forest stand level

Hans Pretzsch Chair for Forest Growth and Yield Science Technische Universität München

1 Mixed vs. pure on total stand level

2 Analyses on species level

- 3 Allometric correction before causal analysis
- 4 Covariance analysis on species level
- 5 Components: Density, mean tree productivity

Experimental setup for scrutiny of mixing effects Zwiesel 111/3,4,5 Bavarian Forest

Ratio productivity RPR "with plant's-eye view" and ratio productivity RPA "forester's-eye view"

the species' productivity share in mixture

 $pp_{(1),2}, pp_{1,(2)}$

 $p_{1,2} = pp_{(1),2} + pp_{1,(2)}$

Relationship between RPR and RPA depending on mixing portions and species productivity

Comparison between RPR and RPA for model stand

p_1 (t ha ⁻¹ vr ⁻¹)	p_2 (t ha ⁻¹ vr ⁻¹)	m_1	$pp_{1,(2)}$ (t ha ⁻¹ vr ⁻¹)	m_2	$pp_{(1),2}$ (t ha ⁻¹ vr ⁻¹)	RPR _{1,2}	RPA _{1,2}
10	10	0.25	5.0	0.75	6.0	1.100	1.100
7	8	0.50	6.0	0.50	7.0	1.732	1.733
15	10	0.25	10.5	0.75	4.0	1.100	1.289
10	15	0.25	7.0	0.75	6.0	1.100	0.945
15	8	0.75	6.0	0.25	4.5	1.000	0.800
8	15	0.75	3.0	0.25	9.0	1.000	1.280
15	10	0.60	4.5	0.40	6.0	0.900	0.808
5	15	0.60	1.5	0.40	9.0	0.900	1.167

$$RPR_{1,2} = \frac{pp_{1,(2)}}{p_1} + \frac{pp_{(1),2}}{p_2} \qquad RPA_{1,2} = \frac{pp_{1,(2)} + pp_{(1),2}}{p_1 \times m_1 + p_2 \times m_2}$$

Productivity (t ha⁻¹ yr⁻¹) of mixed compared with pure stands in Central Europe

ТЛП

Productivity of mixed versus pure stands for mixtures of spruce, beech, oak, and fir

Species composition	n RPR _{1,2}		RPR _{1,(2)}	RPR(1),2	$RPA_{1,2}$	Δ mass a.g.
		./.	./.	./.	./.	$(t ha^{-1} yr^{-1})$
N. spruce/E. beech	213	1.22 ±0.03	1.15 ±0.04	1.46 ± 0.05	1.18 ±0.03	1.22 ±0.23
S. oak/E. beech	217	1.20 ± 0.04	1.24 ±0.03	1.17 ± 0.04	$1.17\pm\!\!0.03$	1.50 ±0.32
S. fir/N. spruce	27	1.15 ± 0.05	1.25 ±0.11	1.13 ±0.06	$1.14\pm\!0.05$	1.01 ±0.35
S. pine/E. beech	33	$1.80\pm\!\!0.14$	2.19 ± 0.27	1.65 ± 0.12	$1.78\pm\!0.14$	3.64 ± 0.64

Productivity of mixed versus pure stands for mixtures of spruce, beech, oak, and fir

Summary 1:

RPR and RPA deliver slightly different information
RPR ref. to plant's-eye view, RPA to forester's-eye
on average RPR and RPA > 1.0

Species composition	n	RPR _{1,2}	RPR _{1,(2)}	RPR(1),2	RPA _{1,2}	Δ mass a.g.
		./.	./.	./.	./.	(t ha ⁻¹ yr ⁻¹)
N. spruce/E. beech	213	1.22 ±0.03	1.15 ±0.04	1.46 ± 0.05	1.18 ±0.03	1.22 ±0.23
S. oak/E. beech	217	1.20 ± 0.04	1.24 ±0.03	1.17 ± 0.04	1.17 ±0.03	1.50 ±0.32
S. fir/N. spruce	27	1.15 ± 0.05	1.25 ±0.11	1.13 ±0.06	$1.14\pm\!0.05$	1.01 ± 0.35
S. pine/E. beech	33	$1.80\pm\!\!0.14$	2.19 ± 0.27	1.65 ± 0.12	1.78 ± 0.14	3.64 ± 0.64

Analyzing mixing effects on forest stand level

Hans Pretzsch Chair for Forest Growth and Yield Science Technische Universität München

1 Mixed vs. pure on total stand level

2 Analyses on species level

- 3 Allometric correction before causal analysis
- 4 Covariance analysis on species level
- 5 Components: Density, mean tree productivity

Ratio in terms of relative productivity RPR on species level

RPR depending on the admixed species and their portions: Shown for spruce, fir, beech, pine, and oak

Ratio in terms of relative productivity RPR on species level

Species ₁	Species ₂	sample	$\overline{RPR}_{1,(2)} \pm SE$	$\overline{\mathrm{m}}_{2}$
		size n	-/(-/	
Norway spruce	European beech	184	0.99 ± 0.03	0.39
	Silver fir	27	1.13 ± 0.06	0.38
	Scots pine	12	$\textbf{2.84} \pm 0.42$	0.72
European beech	Norway spruce	198	1.46 ± 0.05	0.58
	Sessile oak	422	$\textbf{1.17} \pm 0.04$	0.59
	Scots pine	33	1.65 ± 0.12	0.39
Sessile oak	European beech	215	$\textbf{1.28} \pm 0.04$	0.44
Scots pine	European beech	37	1.92 ± 0.18	0.59
	Norway spruce	12	$\textbf{1.88} \pm 0.14$	0.28
Silver fir	Norway spruce	32	1.35 ± 0.11	0.59

Mixing reactions RPR of the two species in a stand are mostly positively correlated: Indication for mutualism

Species ₁	Species ₂		Pearson	sample size	e p-value
			correlation	n	
		RF	$PR_{1,(2)} \times RPR$	(1),2	
Norway spruce	E. be., S. fir, S.		+ 0.02	205	0.823
	pine				
European beech	N. sp., S. oak, S.		+ 0.13	411	0.011
	pine				
Sessile oak	E. be.		+ 0.39	207	0.001
Scots pine	E. be., N. sp.		+ 0.28	49	0.048
Silver fir	N. sp.		+ 0.37	32	0.036

Mixing reactions RPR of the two species in a stand are mostly positively correlated: Indication for mutualism

Species	Species ₂	Pearson correlation	sample size n	p-value					
Summary 2:									
• RPR on species level mostly positive,									
 level depending on species combination, 									
• e. g. effect of be neutral in sp, but positive in pine.									

Analyzing mixing effects on forest stand level

Hans Pretzsch Chair for Forest Growth and Yield Science Technische Universität München

1 Mixed vs. pure on total stand level

2 Analyses on species level

3 Allometric correction before causal analysis

4 Covariance analysis on species level

5 Components: Density, mean tree productivity

Lecture given on March 12th, 2012 at SLU, Alnarp, Sweden

Growth curve in mixed vs. pure stands in schematic representation: slowing down (left) and acceleration (right)

Diminishing validity of the pure reference plots for a causal analysis of mixing effects

Interspecific effect on course of growth, site index, and size development

Mischhestand Dainhastand											
Misch- bestandstafel	Um- triebs- zeit	e n o e s E der ein mit	ertraș Izeln	gsklas en Ho Jał	se olzart nren	en	d G Z des Misch- be- standes	Ertrags- tafel	Um- triebs- zeit	Stän- dige Ertrags- klasse	d G Z des Rein- be- standes
	Jahre		30	60	100	120 bzw. 140	fm		Jahre		fm
a.							1999			n orgen	
Eiche/Buche 1939	140	Eiche	I	I	I	I	2,9	Eiche 1920	140	I	6,9
I. Ertragsklasse		Buche 1)	0,5	II,5	III,1	III,0	4,6	Buche 1931	1 140	I	8,9
b.		Summe					7,5	Buche 193	1 140	II	7,4
Kiefer Fichte 1939	120	Kiefer	Ι	I	I	I	4,2	Kiefer 1908	8 120	Ι	7,5
I. Ertragsklasse		Fichte	111,6	II,6	II,6	II,6	4,3	Fichte 1936/	42 120	I	11,9
		Summe					8,5	"	120	II	9,3
с.							-	"	120	III	7,4
Kiefer/Buche 1939	140	Kiefer	Ι	Ι	Ι	Ι	5,7	Kiefer 190	8 140	I	7.0
I. Ertragsklasse		Buche ²)	-	III,6	III,9	III,6	2,5	Buche 193	1 140	I	8.9
d.		Summe					8,2	"	140	II	7,4
Fichte/Buche 1942	120	Fichte	0,9	I,1	0,9	I	8,0	Fichte 1936	42 120	I	11.9
mit gleichwüchsiger		Buche	0,5	0,7	1,2	I,3	3,6	Buche 193	1 120	I	8,9
Buche		Summe					11,6		120	II	7.4
I. Ertragsklasse								"	120	III	5,6
е.								/"			
Fichte/Buche 1942	120	Fichte	0,8	0,9	0,9	I	8,3	Fichte 1936	42 120	I	11.9
mit mattwüchsiger		Buche 2)	I,3	I,8	II,2	II,4	1,6	Buche 193	1 120	1	8,9
Buche		Summe					9,9	"	120	II	7,4
I. Ertragsklasse								"	120	III	5,6

¹) Verschlechterung der Ertragsklasse durch Aushieb herrschender Buchen

²) Schlechtes Wachstum durch übermäßige Konkurrenz der Nadelhölzer

Mean tree volume in mixed versus pure stands: Shown for spruce, fir, beech, pine, and oak

ТЛ

Development of stand growth, tree growth and tree number in dependence on mean tree size: The problem of included allometric drift

Elimination od allometric drift for comparing mixed vs. pure stand attributes

Elimination od allometric drift for comparing mixed vs. pure stand attributes

Elimination od allometric drift for comparing mixed vs. pure stand attributes

$$\begin{split} & r \overline{iv}_{1,(2)} = \frac{\overline{iv}_{1,(2)}}{\overline{iv}_{1}} & r \overline{iv}'_{1,(2)} = \frac{\overline{iv}'_{1,(2)}}{\overline{iv}_{1}} & \overline{iv}'_{1,(2)} = \overline{iv}_{1,(2)}^{obs} \times (\frac{\overline{v}_{1}}{\overline{v}_{1,(2)}})^{\alpha_{2}} \\ & r N_{1,(2)} = \frac{N_{1,(2)}}{N_{1}} & r N'_{1,(2)} = \frac{N'_{1,(2)}}{N_{1}} & N'_{1,(2)} = N_{1,(2)}^{obs} \times (\frac{\overline{v}_{1}}{\overline{v}_{1,(2)}})^{\alpha_{1}} \\ & r \overline{iv}_{1,(2)} = iv_{1,(2)} / iv_{1} & r \overline{iv}'_{1,(2)} = N_{1,(2)}^{obs} \times \overline{iv}_{1,(2)}^{obs} \times (\overline{v}_{1} / \overline{v}_{1,(2)})^{\alpha_{1} + \alpha_{2}} / iv_{1} \end{split}$$

Analyzing mixing effects on forest stand level

Hans Pretzsch Chair for Forest Growth and Yield Science Technische Universität München

- 1 Mixed vs. pure on total stand level
- 2 Analyses on species level
- 3 Allometric correction before causal analysis
- 4 Covariance analysis on species level
- 5 Components: Density, mean tree productivity

Use of the allometric adjusted productivities for further analysis of mixing effects

$$rN'_{1,(2)} = N'_{1,(2)} / N_1$$

$$r\overline{p}'_{1,(2)} = \overline{p}'_{1,(2)} / \overline{p}_1$$

$$rp'_{1,(2)} = rN'_{1,(2)} \times r\overline{p}'_{1,(2)}$$

$$rp'_{1,2} = rp'_{1,(2)} \times m_1 + rp'_{(1),2} \times m_2$$

Over- and underyielding on species level depending on covariates

Target species sp1	N. spruce	E. beech	S. oak	S. pine	S. fir
Admixed species	S. fir, E. be	S. oak, N. sp,	E. be	N. sp, S.	N. sp
sp ₂ , sp ₃ , sp ₄	S. pine	S. pine		pine	
$rp'_{1,(2)}$					
intercept	1.54	-0.03	1.84	4.45	3.30
m_2	0.88	1.42	-0.33	-1.82	1.02
hq1	-	0.02	0.02	-	-
ha ₁ /ha ₂	-	1.01			-
site index sp1	-0.03	-0.31	-0.03	-0.07	-0.10
dummy sp ₃	0.10	0.33	-	0.52	-
dummy sp ₄	1.19	0.60	-	-	-
n total	223	648	215	49	32
whole model R ²	0.38	0.18	0.14	0.24	0.42

Site dependeny of mixing effects: the poorer the site conditions the higher the benefit from mixing

Site dependeny of mixing effects: the poorer the site conditions the higher the benefit from mixing

Analyzing mixing effects on forest stand level

Hans Pretzsch Chair for Forest Growth and Yield Science Technische Universität München

- 1 Mixed vs. pure on total stand level
- 2 Analyses on species level
- 3 Allometric correction before causal analysis
- 4 Covariance analysis on species level

5 Components: Density, mean tree productivity

Analyzing the components of mixing effects: Change in stand density and/or growth of trees

- ⇔ Change in stand density → higher/lower carrying capacity → indicates change in resource supply or resource capture. Usage requires adaptation of stand density management (e.g., SDMD).
- + Change in growth of mean tree → slower/faster growth → indicates change in resource use efficiency.
 Usage requires adaptation in thinning intensity (e.g., return intervals).

Effect of mixing on stand density rN' and mean tree volume growth riv' of Norway spruce and European beech

 $riv' = riv' \times rN'$

Density and productivity effects: Correlation with selected covariates

S Norway spruce	Norway spruce									
2- 1	Variable n=223	rN' _{1,(2)}	$rN'_{1,(2)}$ $r\overline{p}'_{1,(2)}$ si		$h_q \ sp_1$	h _q sp ₁ / h _a sp ₂	m_2			
0 1 2 3 4 5 nN	rN' _{1,(2)}	1	-0.355**	-0.052	-0.020	-0.491 ^{**}	+0.412**			
	$r\overline{p}'_{1,(2)}$	-0.355**	1	-0.259**	- 0.150 [*]	-0.004	+0.175**			
5 European beech	Europear	n beech								
2 1 0 0 1 2 3 4 5	Variable	rN' _{1,(2)}	$r\overline{p}'_{1,(2)}$	site index	$h_q sp_1$	h _q sp ₁ /	m_2			
	$rN'_{1(2)}$	1	-0.185**	-0.170 ^{**}	-0.036	-0.042	+0.186**			
	rp' _{1,(2)}	-0.185**	1	-0.056	+0.184**	+0.110**	+0.037			

Relative stand density over site index for beech with different interspecific competition: left: long-terms plots - right: inventory plots

Relative stand density over site index for beech with different interspecific competition: left: long-terms plots - right: inventory plots

Summary

- Overyielding of mixed versus pure stands on average; wide variation around this mean trend.
- The extent of a species benefit/loss depends mainly on the admixed species.
- Causal analyses require allometric adjustment when mixed and pure stands differ in mean tree size.
- Decrease of overyielding from poor to fertile sites as general trend (SGH).
- Change in density (e.g., beech) or efficiency (e.g., spruce) as species-specific strategies of coping with mixing.

Conclusions and Perspective

• Tracing of mixing effects from stand to tree to branch to leaf level.

• Analyses along ecological gradients.

• Improved integration of mixing effects in models

Many thanks to

David Forrester/Univ. Freiburg Hermann Spellmann/NW-FVA Göttingen Hans-Peter Ehrhart/FAWF Trippstadt Ulrich Kohnle/FVA Freiburg Andreas Zingg/WSL Birmensdorf Kamil Bielak, Michal Zasada, Arkadiusz Bruchwald/Univ. Warsawa

for contributing valuable datasets from long-term experimental plots in pure and mixed stands to this study