

The effect of species mixing on tree and stand growth. Review and perspectives

Hans Pretzsch Chair for Forest Growth and Yield Science Technical University of Munich http://www.wwk.forst.wzw.tum.de/info/presentations/

- 1 Need for silvicultural guidelines and models for mixed-species stands
- 2 Key mixing effects on tree and stand dynamics
- 3 Measures for silvicultural regulation of mixed-species stands

Inaugural Global Forest Biodiversity Initiative Conference & GFBI-FECS Joint Symposium, September 6-9, 2017, Beijing, China

Guidelines for silvicultural regulation of mixed-species stand can bring the mixing idea onto the ground

Inaugural Global Forest Biodiversity Initiative Conference & GFBI-FECS Joint Symposium, September 6-9, 2017, Beijing, China

Silvicultural guidelines require models and scenario analyses of silvicultural options

Inaugural Global Forest Biodiversity Initiative Conference & GFBI-FECS Joint Symposium, September 6-9, 2017, Beijing, China

Summary 1:

- For bringing the mixed-species stand idea to the ground we need silvicultural guidelines, based on models and scenario analyses
- So far, scattered mosaic pieces of knowledge about mixed stands need integration to a picture of the whole
- Mixed stand models require rules for silvicultural regulation

Mixing effects on productivity. Inventory data worldwide and experiments in Central Europe

Liang, J. et al. (2016) Positive Biodiversity-Productivity Relationship Predominant in Global Forests, Science 354(6309):aaf8957

Species	N. sp/	S. pi/	s. oak/	E. be/	S. pi/	E. la/	N. sp/	mean
combination	E. be	E. be	E. be	D-fir	N. sp	N. sp	s. fir	
overyielding	21	30	20	11	21	25	13	
(± SE) in %	(± 3)	(± 9)	(± 3)	(± 8)	(± 11)	(± 6)	(± 6)	
corr. factor	1.10	1.20	1.10	1.10	1.20	1.20	1.10	1.10

Effect of tree species mixing on stand density represented by self-thinning line and SDI

Wider size range, stronger right-skewness in mixed stands; more vertical heterogeneity, often species 1 ahead, species 2 behind

Allometry between crown projection area and stem diameter of European when growing in mono-specific versus mixed stands

Pretzsch, H. (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. Forest Ecology and Management, 327: 251-264.

Allometry between crown projection area and stem diameter of European when growing in mono-specific versus mixed stands

Rules and algorithms for initiating the regeneration depending on the density of the overstorey

Pretzsch H, Forrester D, Bauhus J (2017) Mixed-species forests. Ecology and Management, Springer, Berlin, 653 p

Rules and algorithms for regulation of competition by spatial or temporal separation

Pretzsch H, Forrester D, Bauhus J (2017) Mixed-species forests. Ecology and Management, Springer, Berlin, 653 p

Rules and algorithms for regulation of stand density and species-specific mixing proportions

Pretzsch H, Forrester D, Bauhus J (2017) Mixed-species forests. Ecology and Management, Springer, Berlin, 653 p

Rules and algorithms for regulation of stand density and species-specific mixing proportions

Knowledge gaps and next steps

- stand density and mixing effects
- effect of different spatial mixing patterns (e.g., individual tree, group, cluster)
- mixing effects depending on site conditions
- effect of mixing on tree allometry, structure, wood quality
- further analyses of essential mixtures, e.g., pine/oak, E. beech/Douglas-fir, spruce/fir/beech

Summary and conclusions

- In order to bring mixed-species stands on the ground in forest practice we need quantitative silvicultural guidelines
- The development of guidelines requires models for scenario analyses
- The currently available models need adaptation to mixedspecies stands
- For this purpose knowledge of mixing effects should be extended and integrated into models
- Essential is finally the formulation and integration of rules and algorithms for silvicultural regulation

Criteria for sustainable forest ecosystem management. Objective hierarchy for the management of municipal forest Traunstein

Criteria for sustainable forest management	Indicators	Weight (%)
Forest resources	timber resources, area of forest, extension of area	20
Health and vitality	stability, fitness, elasticity	17
Productive functions	growth, yield, net return	12
Biological diversity	habitat quality, richness flora/fauna, conservation	10
Protective functions	soil, water, climate, noise, protection	10
Socio-economic functions	employment, recreation, esthetics, proximity to nature	31

Gesamteuropäische Kriterien 1-6 und Indikatoren für die nachhaltige Bewirtschaftung von Wäldern

	Kriterien	Indikatoren (beispielhaft)
1	Forstliche Ressourcen	Waldfläche, Kohlenstoffvorrat, Alters- und Durchmesserstruktur,
2	Gesundheit und Vitalität	chem. Bodenzustand, Nadel- und Blattverluste, Deposition,
3	Produktionsfunktionen	Zuwachs, Hiebsatz, Nichtholzprodukte,
4	Biologische Diversität	Baumartenvielfalt, Naturnähe, Totholzvorrat, Landschaftsdiversität,
5	Schutzfunktionen	Anteil Schutzwälder für Klima, Boden, Wasser,
6	Sozio-ökonomische Funktionen	Waldreinertrag, Anzahl der Beschäftigten, Landschaftsbild,