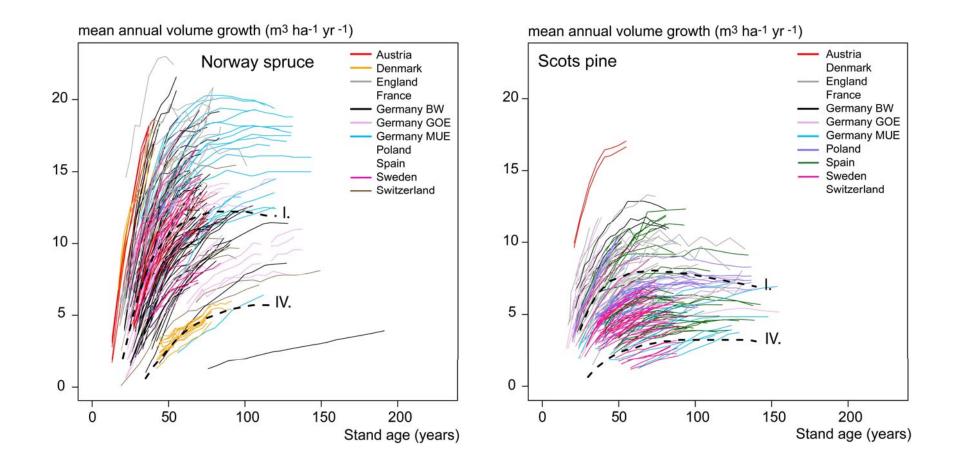


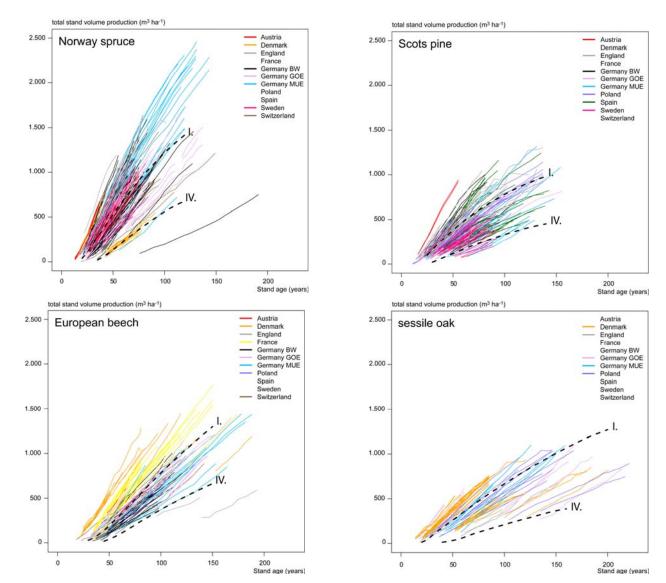
Long-term experiments for unique insights into forest growth dynamics and trends

Hans Pretzsch

http://waldwachstum.wzw.tum.de/index.php?id=presentations


PEFOSS 2018 symposium "People-Forest-Science", Faculty of Forestry, University of Sarajevo, 10.-12.10.2018

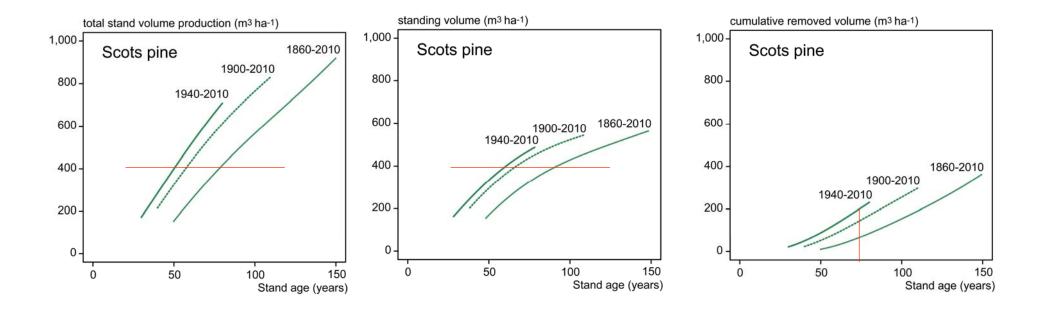
Mean annual volume growth m³ ha⁻¹ yr⁻¹ on long-term experiments across Europe since 1860


Long-term experiments for unique insights into forest growth dynamics and trends

Hans Pretzsch

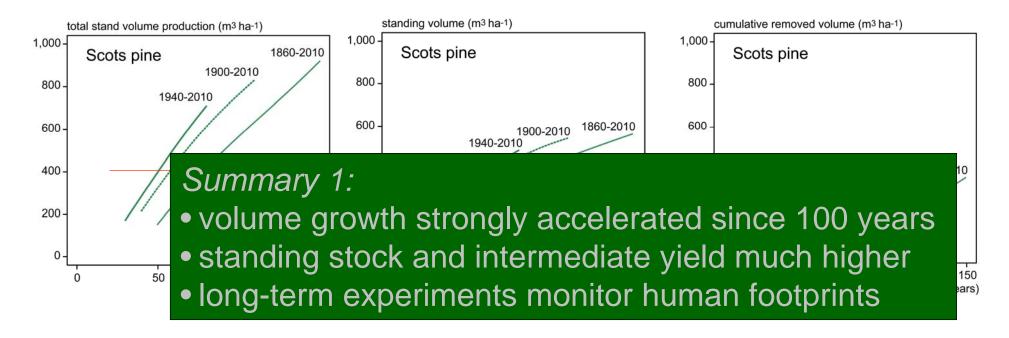
- 1 Stand growth acceleration by environmental change
- 2 Wood density reduced by climate change
- 3 Increase and stabilization of growth of mixedspecies versus mono-specific stands

1 Changes of the total stand volume production on 577 long term trials in Europe since 1860



model: volume growth = f (age, calender year..)

1 Growth trends of Scots pine in Europe



- a given total stand volume production and standing stock is reached 30 years early than 100 years ago
- at the age of 75 intermediate yield is 200 m³ ha⁻¹ while it was just 75 m³ ha⁻¹ 100 years ago,
- this means an increase of intermediate yield by 150 %.

Pretzsch, H. et al. (2018) Maintenance of long-term experiments for unique insights into forest growth dynamics and trends. Review and perspectives, Assmann review series, EFOR

1 Growth trends of Scots pine in Europe

- a given total stand volume production and standing stock is reached 30 years early than 100 years ago
- at the age of 75 intermediate yield is 200 m³ ha⁻¹ while it was just 75 m³ ha⁻¹ 100 years ago,
- this means an increase of intermediate yield by 150 %.

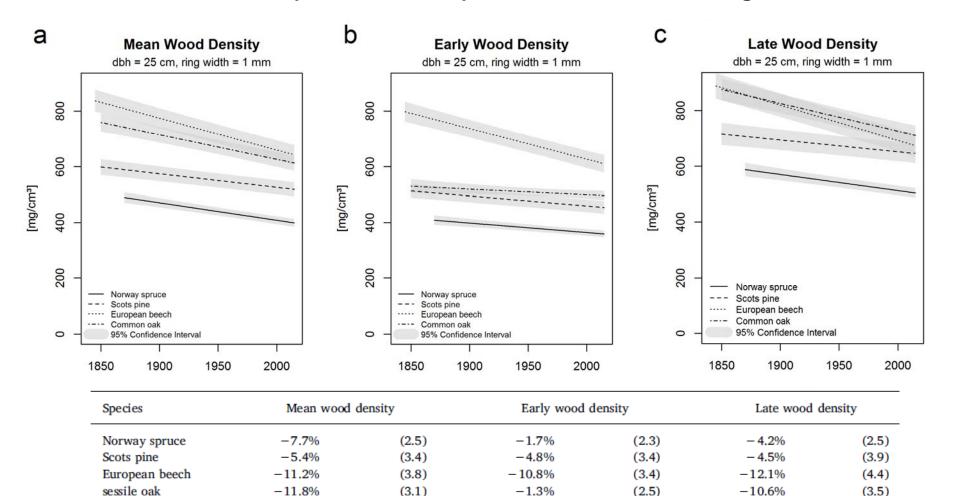
Pretzsch, H. et al. (2018) Maintenance of long-term experiments for unique insights into forest growth dynamics and trends. Review and perspectives, Assmann review series, EFOR

2 Wood density reduced by climate and management

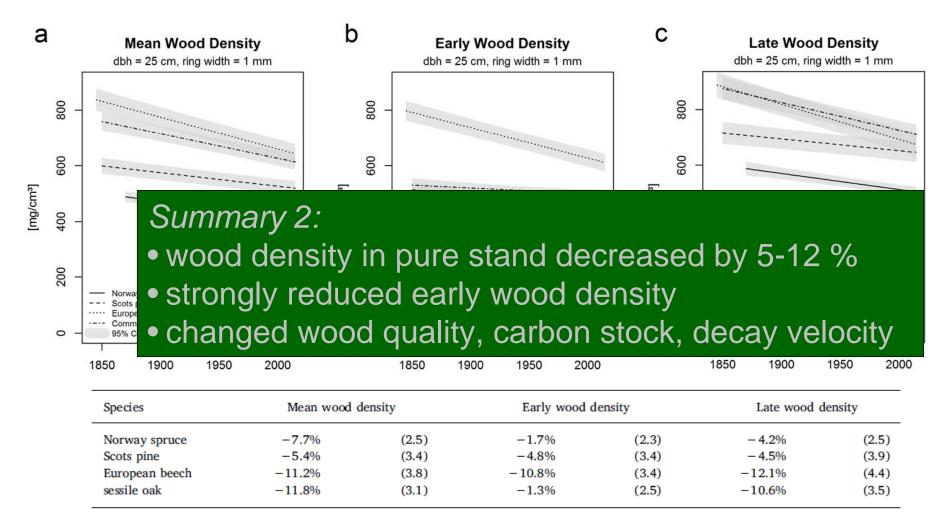
increment core sampling:

```
sample plots: 41 long-term experiments
species: N. sp (13), S. pi (11), E. beech (8),
sess. oak (9)
trees: 392
trees per species: N. sp (127), S. pi (103), E.
beech (63), sess. oak (99),
time span: 1870-2016
age: 31-194 years
rings: > 30.000
```

LIGNOSTATION, high frequency wood densitometry

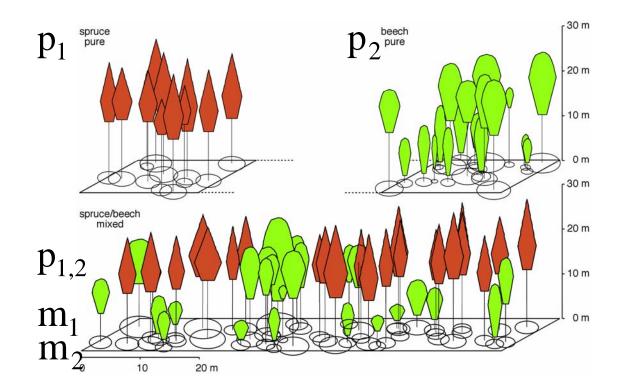

model
wood density = f (tree size, ring width, calender year..)

Pretzsch, H et al. (2018) Wood density reduced while wood volume growth accelerated in Central European forests since 1870, Forest Ecology and Management, 429: 589-616


2 Wood density reduced by climate and management

Pretzsch, H et al. (2018) Wood density reduced while wood volume growth accelerated in Central European forests since 1870, Forest Ecology and Management, 429: 589-616

2 Wood density reduced by climate and management



Pretzsch, H et al. (2018) Wood density reduced while wood volume growth accelerated in Central European forests since 1870, Forest Ecology and Management, 429: 589-616

3 Experimental setup for scrutiny of mixing effects Zwiesel 111/3,4,5 Bavarian Forest

relative productivity = $p_{1,2}/(p_1 \times m_1 + p_2 \times m_2)$

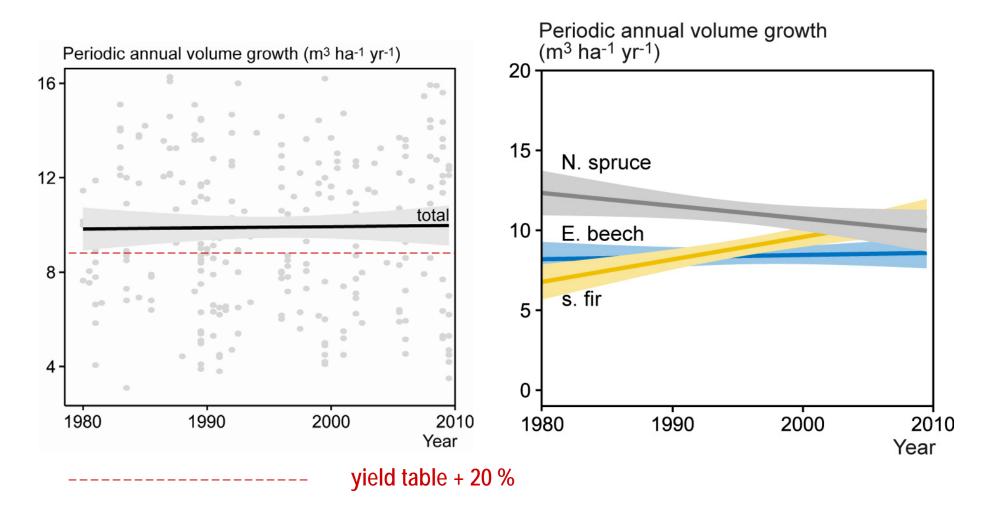
3 Meta-analyses of overyielding in mixed vs. pure stands

spruce-beech

oak-beech

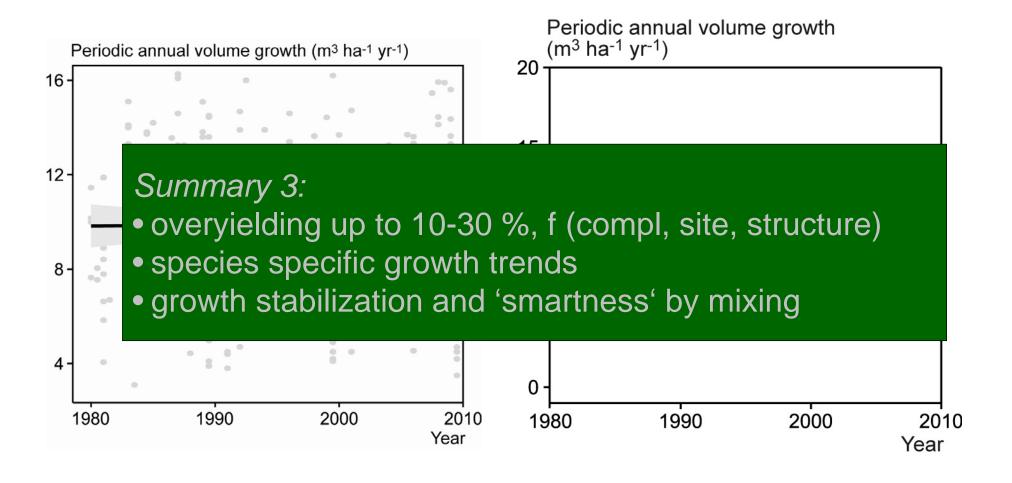
experimental plot				relative di	fference [95% CI]	experin	nental plot		relative of	lifference [95% CI]
Ehingen 51 Wiedemann Mitterteich 101 Westerhof 131b37 Westerhof 131b31 Wieda 114 Zwiesel 111 Uslar 57 Daun 1207 Zwiesel 134 Knobben 44 1/2 NP 602 Daun 1206 Zwiesel 135 Geislingen 76 Morbach 1501 Freising 813 Nordhalben 811 Murten 20 Schongau 814	F	┄┰┲ ╼┲╢╧╧┽┼┿┿┿┿╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷	-	• •	$\begin{array}{c} 0.87 \left[\ 0.71 \ , \ 1.06 \right] \\ 0.95 \left[\ 0.85 \ , \ 1.06 \right] \\ 0.98 \left[\ 0.93 \ , \ 1.02 \right] \\ 0.99 \left[\ 0.91 \ , \ 1.07 \right] \\ 0.99 \left[\ 0.81 \ , \ 1.21 \right] \\ 1.05 \left[\ 1.00 \ , \ 1.11 \right] \\ 1.05 \left[\ 1.00 \ , \ 1.11 \right] \\ 1.07 \left[\ 0.99 \ , \ 1.61 \right] \\ 1.11 \left[\ 0.94 \ , \ 1.31 \right] \\ 1.13 \left[\ 0.94 \ , \ 1.37 \right] \\ 1.14 \left[\ 0.95 \ , \ 1.36 \right] \\ 1.14 \left[\ 1.05 \ , \ 1.24 \right] \\ 1.15 \left[\ 1.03 \ , \ 1.28 \right] \\ 1.18 \left[\ 1.03 \ , \ 1.28 \right] \\ 1.18 \left[\ 1.03 \ , \ 1.28 \right] \\ 1.25 \left[\ 1.00 \ , \ 1.56 \right] \\ 1.30 \left[\ 0.98 \ , \ 1.72 \right] \\ 1.59 \left[\ 1.30 \ , \ 1.95 \right] \\ 1.70 \left[\ 1.50 \ , \ 1.94 \right] \\ 2.00 \left[\ 1.68 \ , \ 2.38 \right] \\ 2.02 \left[\ 1.51 \ , \ 2.72 \right] \end{array}$	Concise Waldbrut Gryfino 3 Dhronecl Gryfino 3 Ebrach 1 Waldbrut Main-Tau Jossgrur Ebrach 1 Hochstift Schluech Hochstift Balmis Hochstift Eichbueł Rothenbu Kelheim Rohrbrut	85 ken 33 32 nn 105 uber 86 ad 151 33 619 ntern 618 617 nl uch 801 804	╶ ┙ ┙		0.73 [0.60 , 0.89] 0.84 [0.81 , 0.87] 0.86 [0.78 , 0.94] 0.95 [0.81 , 1.11] 0.96 [0.86 , 1.07] 0.97 [0.75 , 1.25] 1.00 [0.91 , 1.11] 1.04 [0.99 , 1.10] 1.12 [1.02 , 1.22] 1.23 [0.96 , 1.58] 1.24 [1.07 , 1.43] 1.27 [0.95 , 1.69] 1.30 [1.19 , 1.42] 1.42 [1.32 , 1.52] 1.48 [1.35 , 1.63] 1.80 [1.30 , 2.49] 2.24 [1.88 , 2.67] 2.43 [1.96 , 3.01] 2.53 [1.90 , 3.37]
RE Model		-	•		1.19 [1.08 , 1.31]	RE Mode	el	-		1.24 [1.06 , 1.45]
		i	1				Г—	1 1 1		
	0.61	1.00	1.65	2.72			0.37	0.61 1.00 1.65	2.72 4.48	
	mix	ked stand	/ pure :	stand				mixed stand/ pure	e stand	
Species		N.	sp/	S. pi/	s. oak/	E. be/	S. pi/	E. la/	N. sp/	mean
combina	tion	E.	be	E. be	E. be	D-fir	N. sp	N. sp	s. fir	
overyield	ding	2	1	30	20	11	21	25	13	
(± SE) in	1 %	(±	3)	(± 9)	(± 3)	(± 8)	(± 11)	(± 6)	(± 6)	
corr. fact	tor	1.	10	1.20	1.10	1.10	1.20	1.20	1.10	1.10

Jactel et al. (2018), Pretzsch, Forrester and Bauhus (2017), Liang, J. et al. (2016)

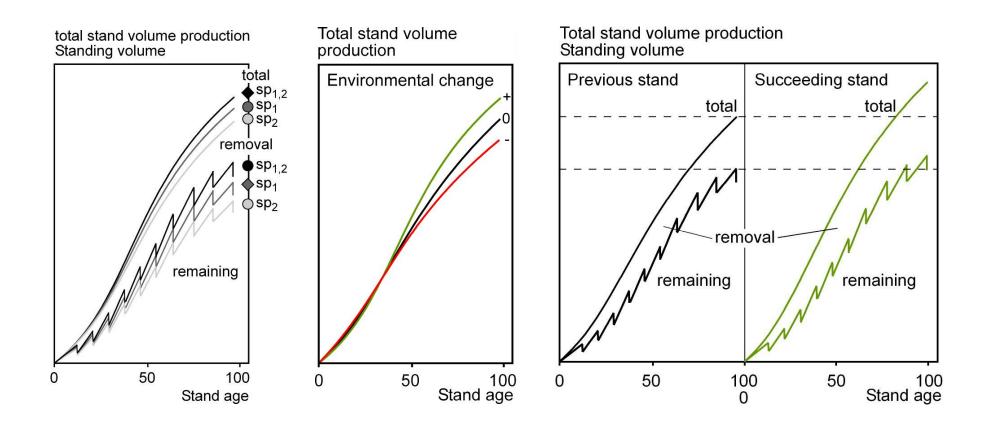

Meta-analysis on overyielding of mixed stands of spruce-fir-beech in Europe based on longterm experiments

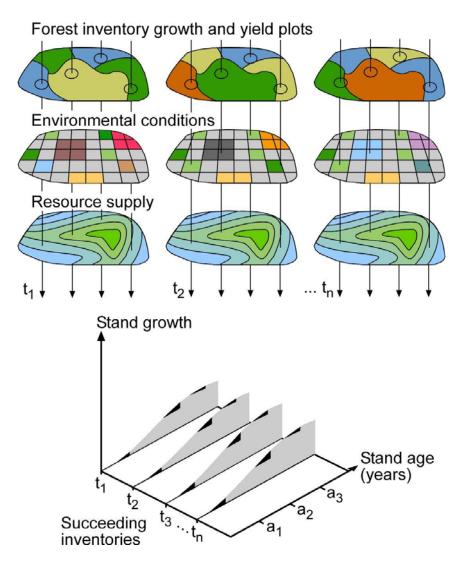
experimental plot			~		relative c	lifference [95% Cl]
Kreuth 120		⊢ ∎-	-			0.71 [0.64 , 0.79]
Partenkirchen 115		I				0.75 [0.50 , 1.11]
Kreuth 125		F				0.85 [0.73 , 0.98]
Ruhpolding 113						0.99 [0.95 , 1.03]
Kreuth 123			—			1.01 [0.77 , 1.32]
Ruhpolding 116		F				1.21 [0.71 , 2.05]
Kreuth 126						1.22 [0.99 , 1.51]
Kreuth 124						1.34 [1.30 , 1.38]
Freyung 129				⊢∎→		1.48 [1.34 , 1.64]
Bodenmais 130				⊷∎⊷i		1.48 [1.37 , 1.61]
Kreuth 122			- F			1.49 [1.18 , 1.88]
Kreuth 824						1.49 [1.07 , 2.08]
Traunstein 147				⊢∎⊣		1.58 [1.46 , 1.72]
Marquartstein 108				⊢ ∎1		1.69 [1.50 , 1.90]
RE Model			-	-		1.20 [1.03 , 1.40]
	[
	0.37	0.61	1.00	1.65	2.72	
		mixed s	tand / pu	ire stand		

Growth stability of the n=105 CLIMO study 1 spruce-fir-beech stands



Hilmers, T et al. (in preparation) Productivity of mountain mixed forests in Europe, Forestry


Growth stability of the n=105 CLIMO study 1 spruce-fir-beech stands


Unique stand information just from long-term experiments: total production, stand history, growth trends

Pretzsch, H. et al. (2018) Maintenance of long-term experiments for unique insights into forest growth dynamics and trends. Review and perspectives, Assmann review series, EFOR

Criteria for sustainable forest ecosystem management. Objective hierarchy for the management of municipal forest Traunstein

Criteria for sustainable forest management	Indicators	Weight (%)
Forest resources	timber resources, area of forest, extension of area	20
Health and vitality	stability, fitness, elasticity	17
Productive functions	growth, yield, net return	12
Biological diversity	habitat quality, richness flora/fauna, conservation	10
Protective functions	soil, water, climate, noise, protection	10
Socio-economic functions	employment, recreation, esthetics, proximity to nature	31

Thanks for funding by COST CLIMO

EU REFORM (# 2816ERA02S), CARE4C, BIODIVERSA, DFG, MStELF, MStU, BaySF

Thanks for provinding data to partner institutions in: Austria, Bosnia-Herzogowina, Bulgaria, Denmark, England, France, Germany, Italy, Poland, Serbia, Slovenia, Sweden, Switzerland, Spain, and others http://waldwachstum.wzw.tum.de/index.php?id=presentations