New papers from Ranf lab.
The multifaceted functions of lipopolysaccharide in plant-bacteria interactions.
Alexander Kutschera, Stefanie Ranf (2018)
In Gram-negative bacteria, the cell envelope largely consists of lipopolysaccharide (LPS), a class of heterogeneous glycolipids. As a fundamental component of the outer membrane, LPS provides stability to the bacterial cell and forms a protective cover shielding it from hostile environments. LPS is not only fundamental to bacterial viability, but also makes a substantial contribution both directly and indirectly to multiple aspects of inter-organismic interactions. During infection of animal and plant hosts, LPS promotes bacterial virulence but simultaneously betrays bacteria to the host immune system. Moreover, dynamic remodulation of LPS structures allows bacteria to fine-tune OM properties and quickly adapt to diverse and often hostile environments, such as those encountered in host tissues. Here, we summarize recent insights into the multiple functions of LPS in plant-bacteria interactions and discuss what we can learn from the latest advances in the field of animal immunity. We further pinpoint open questions and future challenges to unravel the different roles of LPS in the dynamic interplay between bacteria and plant hosts at the mechanistic level.
********************************************************************************************************
Pattern Recognition Receptors—Versatile Genetic Tools for Engineering Broad-Spectrum Disease Resistance in Crops.
Stefanie Ranf (2018)
Infestations of crop plants with pathogens pose a major threat to global food supply. Exploiting plant defense mechanisms to produce disease-resistant crop varieties is an important strategy to control plant diseases in modern plant breeding and can greatly reduce the application of agrochemicals. The discovery of different types of immune receptors and a detailed understanding of their activation and regulation mechanisms in the last decades has paved the way for the deployment of these central plant immune components for genetic plant disease management. This review will focus on a particular class of immune sensors, termed pattern recognition receptors (PRRs), that activate a defense program termed pattern-triggered immunity (PTI) and outline their potential to provide broad-spectrum and potentially durable disease resistance in various crop species—simply by providing plants with enhanced capacities to detect invaders and to rapidly launch their natural defense program.