New papers from the Isono and Gutjahr labs.
Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis.
Marie Barberon, Guillaume Dubeaux, Cornelia Kolb, Erika Isono, Enric Zelazny and Grégory Vert (2014).
In plants, the controlled absorption of soil nutrients by root epidermal cells is critical for growth and development. IRON-REGULATED TRANSPORTER 1 (IRT1) is the main root transporter taking up iron from the soil and is also the main entry route in plants for potentially toxic metals such as manganese, zinc, cobalt, and cadmium. Previous work demonstrated that the IRT1 protein localizes to early endosomes/trans-Golgi network (EE/TGN) and is constitutively endocytosed through a monoubiquitin- and clathrin-dependent mechanism. Here, we show that the availability of secondary non-iron metal substrates of IRT1 (Zn, Mn, and Co) controls the localization of IRT1 between the outer polar domain of the plasma membrane and EE/TGN in root epidermal cells. We also identify FYVE1, a phosphatidylinositol-3-phosphate-binding protein recruited to late endosomes, as an important regulator of IRT1-dependent metal transport and metal homeostasis in plants. FYVE1 controls IRT1 recycling to the plasma membrane and impacts the polar delivery of this transporter to the outer plasma membrane domain. This work establishes a functional link between the dynamics and the lateral polarity of IRT1 and the transport of its substrates, and identifies a molecular mechanism driving polar localization of a cell surface protein in plants.
****************************************************************************
Phytohormone signaling in arbuscular mycorhiza development.
Caroline Gutjahr (2014)
Current Opinion in Plant Biology
To establish arbuscular mycorhiza (AM) symbiosis glomeromycotan fungi colonize the interior of roots. This process is associated with developmental changes of root cells as well as fungal hyphae. The formation of fungal colonization-structures and the extent of root colonization are largely under plant control, depending on environmental conditions and the resulting physiological state of the host. Phytohormone signaling pathways are currently emerging as important regulators of AM development. Root exuded strigolactones activate AM fungi before colonization and a host strigolactone receptor component is required for AM development. Auxin quantitatively influences AM colonization and might perform an additional cell-autonomous function in the promotion of arbuscule development. Gibberellin signaling inhibits AM and conversely DELLA proteins are required for AM formation. Given the importance of phytohormone signaling in plant developmental responses to the environment it can be predicted that elucidating how phytohormones regulate AM development will provide a lead into understanding how plants orchestrate AM symbiosis with their physiological needs under changing environmental conditions.