Persönlicher Status und Werkzeuge

Sprachwahl

15.02.2022

New paper from our SFB924 Alumnus principal investigator Brigitte Poppenberger on the regulation of GA biosynthesis by the transcription factor CESTA.

The brassinosteroid-regulated transcription factor CESTA induces the GA2-oxidase GA2ox7. 

Plant Physiol. online early

Pablo Albertos, Tanja Wlk, Jayne Griffiths, Maria J Pimenta Lange, Simon J Unterholzner, Wilfried Rozhon, Theo Lange, Alexander M Jones, Brigitte Poppenberger.

Brassinosteroids (BRs) are plant steroids that have growth-promoting capacities, which are partly enabled by an ability to induce biosynthesis of gibberellins (GAs), a second class of plant hormones. In addition, BRs can also activate GA catabolism; here we show that in Arabidopsis (Arabidopsis thaliana) the basic helix–loop–helix transcription factor CESTA (CES) and its homologues BRASSINOSTEROID-ENHANCED EXPRESSION (BEE) 1 and 3 contribute to this activity. CES and the BEEs are BR-regulated at the transcriptional and posttranslational level and participate in different physiological processes, including vegetative and reproduction development, shade avoidance, and cold stress responses. We show that CES/BEEs can induce the expression of the class III GA 2-oxidase GA2ox7 and that this activity is increased by BRs. In BR signaling — and CES/BEE-deficient mutants, GA2ox7expression decreased, yielding reduced levels of GA110, a product of GA2ox7activity. In plants that over-express CES, GA2ox7 expression is hyper-responsive to BR, GA110 levels are elevated and amounts of bioactive GA are reduced. We provide evidence that CES directly binds to the GA2ox7 promoter and is activated by BRs, but can also act by BR-independent means. Based on these results, we propose a model for CES activity in GA catabolism where CES can be recruited for GA2ox7 induction not only by BR, but also by other factors.