New paper from the Lahaye lab.
From dead leaf, to new life: TAL effectors as tools for synthetic biology.
Orlando de Lange, Andreas Binder and Thomas Lahaye (2013)
Whether rice, yeast, or fly there is barely a model organism not yet reached by transcription activator like effectors (TALEs) and their derivative fusion proteins. Insights into fundamental biology are now arriving on the back of work in the last years to develop these proteins as tools for molecular biology. This began with the publication of the simple cipher determining base-specific DNA recognition by TALEs in 2009 and now encompasses a huge variety of established fusion proteins mediating targeted modifications to transcriptome, genome, and recently, epigenome. Straightforward design and exquisite specificity, allowing unique sites to be targeted even within complex eukaryote genomes, are key to the popularity of this system. Synthetic biology is one field that is just beginning to make use of these properties with a number of recent publications demonstrating TALE-mediated regulation of synthetic genetic circuits. Intense interest has surrounded the CRISPR/Cas9 system within the last twelve months and it is already proving its mettle as a tool for targeted gene modifications and transcriptional regulation. However, questions over off-target activity and means for independent regulation of multiple Cas9-guide RNA pairs will have to be resolved before this method enters into the synthetic biology toolbox. TALEs are already showing promise as regulators of synthetic biological systems, a role that will likely be developed further in the coming years.