New papers from Dresselhaus lab.
Why cellular communication during plant reproduction is particularly mediated by CRP signalling.
Susanne Bircheneder and Thomas Dresselhaus (2016)
Secreted cysteine-rich peptides (CRPs) represent one of the main classes of signalling peptides in plants. Whereas post-translationally modified small non-CRP peptides (psNCRPs) are mostly involved in signalling events during vegetative development and interactions with the environment, CRPs are overrepresented in reproductive processes including pollen germination and growth, self-incompatibility, gamete activation and fusion as well as seed development. In this opinion paper we compare the involvement of both types of peptides in vegetative and reproductive phases of the plant lifecycle. Besides their conserved cysteine pattern defining structural features, CRPs exhibit hypervariable primary sequences and a rapid evolution rate. As a result, CRPs represent a pool of highly polymorphic signalling peptides involved in species-specific functions during reproduction and thus likely represent key players to trigger speciation in plants by supporting reproductive isolation. In contrast, precursers of psNCRPs are proteolytically processed into small functional domains with high sequence conservation and act in more general processes. We discuss parallels in downstream processes of CRP signalling in both reproduction and defence against pathogenic fungi and alien pollen tubes, with special emphasis on the role of ROS and ion channels. In conclusion we suggest that CRP signalling during reproduction in plants has evolved from ancient defence mechanisms.
****************************************************************************************
Fertilization mechanisms in flowering plants.
Thomas Dresselhaus, Stefanie Sprunck and Gary M. Wessel (2016)
Compared with the animal kingdom, fertilization is particularly complex in flowering plants (angiosperms). Sperm cells of angiosperms have lost their motility and require transportation as a passive cargo by the pollen tube cell to the egg apparatus (egg cell and accessory synergid cells). Sperm cell release from the pollen tube occurs after intensive communication between the pollen tube cell and the receptive synergid, culminating in the lysis of both interaction partners. Following release of the two sperm cells, they interact and fuse with two dimorphic female gametes (the egg and the central cell) forming the major seed components embryo and endosperm, respectively. This process is known as double fertilization. Here, we review the current understanding of the processes of sperm cell reception, gamete interaction, their pre-fertilization activation and fusion, as well as the mechanisms plants use to prevent the fusion of egg cells with multiple sperm cells. The role of Ca(2+) is highlighted in these various processes and comparisons are drawn between fertilization mechanisms in flowering plants and other eukaryotes, including mammals.
**************************************************************************************
Expression analysis of KDEL-Cys-EPs, programmed cell death markers during reproduction in Arabidopsis.
Liang-zi Zhou, Timo Höwing, Benedikt Müller, Ulrich Z. Hammes, Christine Gietl and Thomas Dresselhaus (2016)
Programmed cell death (PCD) is essential for proper plant growth and development. Plant-specific papain-type KDEL-tailed cysteine endopeptidases (KDEL-CysEPs or CEPs) have been shown to be involved in PCD during vegetative development as executors for the last step in the process. The Arabidopsis genome encodes three KDEL-CysEPs: AtCEP1, AtCEP2 and AtCEP3. With the help of fluorescent fusion reporter lines, we report here a detailed expression analysis of KDEL-CysEP (pro)proteins during reproductive processes, including flower organ and germline development, fertilization and seed development. AtCEP1 is highly expressed in different reproductive tissues including nucellus cells of mature ovule and the connecting edge of anther and filament. After fertilization, AtCEP1 marks integument cell layers of the seeds coat as well as suspensor and columella cells of the developing embryo. Promoter activity of AtCEP2 is detected in the style of immature and mature pistils, in other floral organs including anther, sepal and petal. AtCEP2 mainly localizes to parenchyma cells next to xylem vessels. Although there is no experimental evidence to demonstrate that KDEL-CysEPs are involved in PCD during fertilization, the expression pattern of AtCEPs, which were previously shown to represent cell death markers during vegetative development, opens up new avenues to investigate PCD in plant reproduction.